1,192 research outputs found

    Propulsion Options for Primary Thrust and Attitude Control of Microspacecraft

    Get PDF
    Order of magnitude decreases in the size of scientific satellites and spacecraft could provide concurrent decreases in mission costs because of lower launch and fabrication costs. Although many subsystems are amenable to dramatic size reductions, miniaturization of the propulsion subsystems is not straightforward. There are a range of requirements for both primary and attitude control propulsion, dictated by mission requirements, satellite size, and power restrictions. Many of the established propulsion technologies can not currently be applied to microspacecraft. Because of this, micro-electromechanical systems (MEMS) fabrication technology is being explored as a path for miniaturization

    Potential New Sensor for Use With Conventional Gas Carburizing

    Get PDF
    Diagnostics developed for in-situ monitoring of rocket combustion environments have been adapted for use in heat treating furnaces. Simultaneous, in-situ monitoring of the carbon monoxide, carbon dioxide, methane, water, nitrogen and hydrogen concentrations in the endothermic gas of a heat treating furnace has been demonstrated under a Space Act Agreement between NASA Lewis, the Heat Treating Network, and Akron Steel Treating Company. Equipment installed at the Akron Steel Treating Company showed the feasibility of the method. Clear and well-defined spectra of carbon monoxide, nitrogen and hydrogen were obtained by means of an optical probe mounted on the endothermic gas line of a gas generator inside the plant, with the data reduction hardware located in the basement laboratory. Signals to and from the probe were transmitted via optical fibers

    Gaseous hydrogen/oxygen injector performance characterization

    Get PDF
    Results are presented of spontaneous Raman scattering measurements in the combustion chamber of a 110 N thrust class gaseous hydrogen/oxygen rocket. Temperature, oxygen number density, and water number density profiles at the injector exit plane are presented. These measurements are used as input profiles to a full Navier-Stokes computational fluid dynamics (CFD) code. Predictions of this code while using the measured profiles are compared with predictions while using assumed uniform injector profiles. Axial and radial velocity profiles derived from both sets of predictions are compared with Rayleigh scattering measurements in the exit plane of a 33:1 area ratio nozzle. Temperature and number density Raman scattering measurements at the exit plane of a test rocket with a 1:1.36 area ratio nozzle are also compared with results from both sets of predictions

    Power, Propulsion, and Communications for Microspacecraft Missions

    Get PDF
    The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed

    Channel kets, entangled states, and the location of quantum information

    Full text link
    The well-known duality relating entangled states and noisy quantum channels is expressed in terms of a channel ket, a pure state on a suitable tripartite system, which functions as a pre-probability allowing the calculation of statistical correlations between, for example, the entrance and exit of a channel, once a framework has been chosen so as to allow a consistent set of probabilities. In each framework the standard notions of ordinary (classical) information theory apply, and it makes sense to ask whether information of a particular sort about one system is or is not present in another system. Quantum effects arise when a single pre-probability is used to compute statistical correlations in different incompatible frameworks, and various constraints on the presence and absence of different kinds of information are expressed in a set of all-or-nothing theorems which generalize or give a precise meaning to the concept of ``no-cloning.'' These theorems are used to discuss: the location of information in quantum channels modeled using a mixed-state environment; the CQCQ (classical-quantum) channels introduced by Holevo; and the location of information in the physical carriers of a quantum code. It is proposed that both channel and entanglement problems be classified in terms of pure states (functioning as pre-probabilities) on systems of p2p\geq 2 parts, with mixed bipartite entanglement and simple noisy channels belonging to the category p=3p=3, a five-qubit code to the category p=6p=6, etc.; then by the dimensions of the Hilbert spaces of the component parts, along with other criteria yet to be determined.Comment: Latex 32 pages, 4 figures in text using PSTricks. Version 3: Minor typographical errors correcte

    Minimum Decision Cost for Quantum Ensembles

    Get PDF
    For a given ensemble of NN independent and identically prepared particles, we calculate the binary decision costs of different strategies for measurement of polarised spin 1/2 particles. The result proves that, for any given values of the prior probabilities and any number of constituent particles, the cost for a combined measurement is always less than or equal to that for any combination of separate measurements upon sub-ensembles. The Bayes cost, which is that associated with the optimal strategy (i.e., a combined measurement) is obtained in a simple closed form.Comment: 11 pages, uses RevTe

    Error estimates for solid-state density-functional theory predictions: an overview by means of the ground-state elemental crystals

    Get PDF
    Predictions of observable properties by density-functional theory calculations (DFT) are used increasingly often in experimental condensed-matter physics and materials engineering as data. These predictions are used to analyze recent measurements, or to plan future experiments. Increasingly more experimental scientists in these fields therefore face the natural question: what is the expected error for such an ab initio prediction? Information and experience about this question is scattered over two decades of literature. The present review aims to summarize and quantify this implicit knowledge. This leads to a practical protocol that allows any scientist - experimental or theoretical - to determine justifiable error estimates for many basic property predictions, without having to perform additional DFT calculations. A central role is played by a large and diverse test set of crystalline solids, containing all ground-state elemental crystals (except most lanthanides). For several properties of each crystal, the difference between DFT results and experimental values is assessed. We discuss trends in these deviations and review explanations suggested in the literature. A prerequisite for such an error analysis is that different implementations of the same first-principles formalism provide the same predictions. Therefore, the reproducibility of predictions across several mainstream methods and codes is discussed too. A quality factor Delta expresses the spread in predictions from two distinct DFT implementations by a single number. To compare the PAW method to the highly accurate APW+lo approach, a code assessment of VASP and GPAW with respect to WIEN2k yields Delta values of 1.9 and 3.3 meV/atom, respectively. These differences are an order of magnitude smaller than the typical difference with experiment, and therefore predictions by APW+lo and PAW are for practical purposes identical.Comment: 27 pages, 20 figures, supplementary material available (v5 contains updated supplementary material

    The cytoplasm of living cells: A functional mixture of thousands of components

    Full text link
    Inside every living cell is the cytoplasm: a fluid mixture of thousands of different macromolecules, predominantly proteins. This mixture is where most of the biochemistry occurs that enables living cells to function, and it is perhaps the most complex liquid on earth. Here we take an inventory of what is actually in this mixture. Recent genome-sequencing work has given us for the first time at least some information on all of these thousands of components. Having done so we consider two physical phenomena in the cytoplasm: diffusion and possible phase separation. Diffusion is slower in the highly crowded cytoplasm than in dilute solution. Reasonable estimates of this slowdown can be obtained and their consequences explored, for example, monomer-dimer equilibria are established approximately twenty times slower than in a dilute solution. Phase separation in all except exceptional cells appears not to be a problem, despite the high density and so strong protein-protein interactions present. We suggest that this may be partially a byproduct of the evolution of other properties, and partially a result of the huge number of components present.Comment: 11 pages, 1 figure, 1 tabl
    corecore