54 research outputs found

    Analysis of cybersecurity threats in Industry 4.0: the case of intrusion detection

    Get PDF
    Nowadays, industrial control systems are experiencing a new revolution with the interconnection of the operational equipment with the Internet, and the introduction of cutting-edge technologies such as Cloud Computing or Big data within the organization. These and other technologies are paving the way to the Industry 4.0. However, the advent of these technologies, and the innovative services that are enabled by them, will also bring novel threats whose impact needs to be understood. As a result, this paper provides an analysis of the evolution of these cyber-security issues and the requirements that must be satis ed by intrusion detection defense mechanisms in this context.Springer ; Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Cloud-Based Manufacturing: Old Wine in New Bottles?

    Get PDF
    AbstractCloud-based manufacturing (CBM), also referred to as cloud manufacturing, is a form of decentralized and networked manufacturing evolving from other relevant manufacturing systems such as web- and agent-based manufacturing. An ongoing debate on CBM in the research community revolves around several aspects such as definitions, key characteristics, computing architectures, programming models, file systems, operational processes, information and communication models, and new business models pertaining to CBM. One question, in particular, has often been raised: Is cloud-based manufacturing a new paradigm, or is it just old wine in new bottles? Based on the discussion of the key characteristics of CBM, the derivation of requirements that an ideal CBM system should satisfy, and a thorough comparison between CBM and other relevant manufacturing systems, we provide supporting evidence that allows us to conclude that CBM is definitely a new paradigm that will revolutionize manufacturing

    Supramolecular Click Chemistry for Surface Modification of Quantum Dots Mediated by Cucurbit[7]uril

    Get PDF
    Cucurbiturils (CBs), barrel-shaped macrocyclic molecules, are capable of self-assembling at the surface of nanomaterials in their native state, via their carbonyl-ringed portals. However, the symmetrical two-portal structure typically leads to aggregated nanomaterials. We demonstrate that fluorescent quantum dot (QD) aggregates linked with CBs can be broken-up, retaining CBs adsorbed at their surface, via inclusion of guests in the CB cavity. Simultaneously, the QD surface is modified by a functional tail on the guest, thus the high affinity host-guest binding (logKa > 9) enables a non-covalent, click-like modification of the nanoparticles in aqueous solution. We achieved excellent modification efficiency in several functional QD conjugates as protein labels. Inclusion of weaker-binding guests (logKa = 4-6) enables subsequent displacement with stronger binders, realising modular switchable surface chemistries. Our general "hook-and-eye" approach to host-guest chemistry at nanomaterial interfaces will lead to divergent routes for nano-architectures with rich functionalities for theranostics and photonics in aqueous systems
    • …
    corecore