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Abstract
This paper considers the state estimation problem for a class of discrete-time systems
with generalized Lipschitz nonlinear dynamics. Under the assumption that the system
nonlinearities satisfy a quadratically inner-boundedness condition, we design both
the full-order observer and the reduced-order observer for the discrete-time
nonlinear system. Sufficient conditions ensuring the existence of full-order observers
as well as reduced-order observers for such systems are established and formulated in
terms of linear matrix inequality (LMI). Compared with some existing results, we
remove the one-sided Lipschitz restrict and extend the classical Lipschitz observer
design to a larger class of discrete-time nonlinear systems. A numerical example is
included to illustrate the effectiveness of the proposed design.

Keywords: observer design; quadratically inner-boundedness; Lipschitz condition;
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1 Introduction
During the past two decades, the state estimation or observer design problem for nonlin-
ear dynamic systems has received extensively research attention; see [–] and the refer-
ences therein. This is partly due to the fact that knowledge of the state of a dynamic system
plays a key role in many control problems. It is well known that state estimation can be
used for control design, diagnosis or synchronization and unknown input recovery. How-
ever, designing a state observer for a general nonlinear system is not easy or even impos-
sible. Many current research efforts are focused on some specialized classes of nonlinear
systems. For instance, Arcak et al. [, ] developed a circle-criterion approach to design
observer for sector nonlinear systems. For Lipschitz nonlinear systems, the existence con-
ditions of the full-order as well as the reduce-order observers were established in Rajamani
[] and Zhu and Han [], respectively. Robust observers for Lipschitz nonlinear systems
subject to disturbances were proposed in [, ]. Nonlinear observer for neutral uncertain
time-delay systems was addressed in []. Very recently, the classical Lipschitz nonlinear
observer design has been extended to the one-sided Lipschitz case; see e.g. [–].

It should be noted that most of the above-mentioned works are concerned on contin-
uous-time nonlinear systems. Generally, the state estimation problem for discrete-time
nonlinear systems has received little attention. Moreover, in the existing literature there
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have been several useful observer design approaches for some specialized classes of
discrete-time nonlinear systems [–]. For example, Ibrir [] proposed the circle-
criterion approach to discrete-time nonlinear observer design. In [] and [], the au-
thors considered the observer design for discrete-time Lipschitz nonlinear systems. Mo-
tivated by the Arcak-type observer design [, ], Zemouche and Boutayeb [] provided
a unified observer design method for discrete-time Lipschitz systems and extended it to
H∞ synchronization and unknown input recovery. An LMI approach was proposed by
Wang et al. [] to design state observer for discrete-time Lipschitz descriptor systems. In
[] the authors considered an observer design for discrete-time epidemic models. A new
reduced-order observer normal form for nonlinear discrete-time systems was provided
in [].

Very recently, several authors have considered the observer design for one-sided
Lipschitz nonlinear systems in the discrete-time case. Both full-order and reduced-order
observer designs were studied in Benallouch et al. []. In fact, they have developed
an LMI-based design approach to deal with the state estimation problem of one-sided
Lipschitz discrete-time systems. Zhang et al. [] investigated the same problem and pro-
posed a simple observer synthesis condition to ensure the asymptotic convergence. It
should be emphasized that the systems considered by Benallouch et al. [] and Zhang et
al. [] are actually a subset of one-sided Lipschitz nonlinear systems (see Figure  below).
More precisely, the systems are assumed to simultaneously satisfy the one-sided Lipschitz
condition and the quadratically inner-bounded condition. This assumption may lead to
more conservative results and bring additional restrictions on the system model. How to
reduce the conservatism in the existing results of observer design of nonlinear systems is
still an open problem. This motivates our present research.

In this paper, we focus on state observer design for a general class of nonlinear discrete-
time systems that satisfies the quadratically inner-bounded condition only. The main con-
tributions of this paper are two folds. First, we remove the one-sided Lipschitz restric-
tion and only need the assumption of quadratically inner-bounded condition. Note that
the quadratically inner-bounded condition includes the classical Lipschitz condition as a
special case; see e.g. Figure  below. Therefore, we extend the state observer design to a
larger class of discrete-time nonlinear systems. Second, some simple stability conditions
are obtained for both full-order and reduced-order observer designs. In our approach, the
observer designs are formulated as an LMI feasible problem, which is easily solved by stan-
dard convex optimization algorithms. An example on the single-link flexible joint robot is
given to illustrate the effectiveness of the proposed design.

Notations: Rn denotes the n-dimensional real Euclidean space. 〈·, ·〉 represents the inner
product in R

n, i.e., for given x, y ∈ R
n, then 〈x, y〉 = xT y, where xT is the transpose of the

column vector x ∈ R
n. ‖·‖ denotes the Euclidean norm on R

n. For a symmetric matrix P,
P >  (P < ) means that the matrix is positive definite (negative definite). In symmetric
block matrices, we use an asterisk ∗ to represent a term induced by symmetry. I represents
an identity matrix with appropriate dimension.

2 Problem statement and preliminaries
In this paper, we consider the class of discrete-time nonlinear systems described by

{
x(k + ) = Ax(k) + Bu(k) + f (x(k), y(k)),
y(k) = Cx(k),

()
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Figure 1 The Lipschitz, one-sided Lipschitz, and
quadratically inner-bounded function sets [24].

where x(k) ∈ R
n is the state vector and y(k) ∈ R

p is the linear measured output. A, B and
C are constant matrices of appropriate dimensions. f : Rn × R

p → R
n is a real nonlinear

vector field, which is assumed to satisfy the following quadratically inner-bonded condi-
tion [].

Assumption  (see e.g. [, ]) f is quadratically inner-bounded with respect to x(k), i.e.,
for all x, x̂ ∈ R

n, there exist β ,γ ∈ R such that

∥∥f
(
x, y(k)

)
– f

(
x̂, y(k)

)∥∥ ≤ β‖x – x̂‖ + γ
〈
x – x̂, f

(
x, y(k)

)
– f

(
x̂, y(k)

)〉
. ()

It is clear that any Lipschitz function is also quadratically inner-bounded correspond-
ing to β >  and γ = . Consequently, Lipschitz continuity implies quadratic inner-
boundedness, but the converse is not true [, ]. It should be emphasized that β and γ

in () can be any real number and are not necessarily positive. Therefore, the system con-
sidered in the paper includes the well-known Lipschitz nonlinear system as a special case
(see Figure ).

For the purpose of comparison, we introduce the following two assumptions, which are
commonly used in the recent literature for observer design of nonlinear systems. For fur-
ther details, we refer the interested reader to [, , ].

Assumption  (see e.g. []) f is Lipschitz with respect to x(k), i.e., for all x, x̂ ∈ R
n, there

exists a scalar λ >  such that

∥∥f
(
x, y(k)

)
– f

(
x̂, y(k)

)∥∥ ≤ λ‖x – x̂‖. ()

Assumption  (see e.g. [, ]) f is one-sided Lipschitz with respect to x(k), i.e., for all
x, x̂ ∈R

n, there exists a scalar ρ ∈ R such that

〈
x – x̂, f

(
x, y(k)

)
– f

(
x̂, y(k)

)〉 ≤ ρ‖x – x̂‖. ()

Notice that Assumption  is the well-known Lipschitz condition, while Assumption  is
the so-called one-sided Lipschitz condition. It is worth mentioning that the one-sided Lip-
schitz condition has been frequently employed in the study of synchronization of complex
networks [, ]. Moreover, as shown in [] and [], the one-sided Lipschitz condition
implies the Lipschitz condition but the converse is not true. Figure  shows the relation
between the Lipschitz, one-sided Lipschitz, and quadratically inner-bounded function
sets [].

We end this section by introducing a useful lemma.



Wang et al. Advances in Difference Equations  (2015) 2015:307 Page 4 of 10

Lemma  (The Schur complement lemma; see e.g. []) For a real symmetric matrix �,
the following assertions are equivalent:

() � :=
[ � �

�T
 �

]
< .

() � < , and � – �T
�

–
 � < .

() � < , and � – ��
–
�

T
 < .

3 Full-order observer design
In this section, we consider the full-order observer design for system () under Assump-
tion . As usual, we consider a Luenberger-like observer for system () in the form of

{
x̂(k + ) = Ax̂(k) + Bu(k) + f (x̂(k), u(k)) + L(y(k) – ŷ(k)),
ŷ(k) = Cx̂(k),

()

where x̂(k) denotes the estimate of the state x(k). Our design goal is to find a gain matrix
L such that the estimation error e(k) := x(k) – x̂(k) converges asymptotically toward zero.
From () and (), the dynamics of the estimation error is governed by

e(k + ) = (A – LC)e(k) + �fk , ()

where �fk := f (x(k), y(k)) – f (x̂(k), y(k)).
Now, we have the following conclusion.

Theorem  Suppose that system () satisfies Assumption  and the observer has the form
of (). Then the error dynamics is asymptotically stable if there exist matrices P >  and
R with appropriate dimensions and a scalar ω >  such that the following LMI is feasi-
ble:

⎡
⎢⎣

–P + ωβI AT P – CT R + ωγ I AT P – CT R
∗ P – ωI 
∗ ∗ –P

⎤
⎥⎦ < . ()

The resulting observer gain matrix L is given by L = P–RT .

Proof For the estimation error dynamics (), let us consider the Lyapunov function can-
didate V (k) = eT (k)Pe(k). Then the difference of V (k) along the trajectories of () is given
by

�Vk := V (k + ) – V (k) = eT (k + )Pe(k + ) – eT (k)Pe(k). ()

By Assumption ,

�f T
k �fk ≤ βeT (k)e(k) + γ eT (k)�fk . ()

It then follows from () that

ωβeT (k)e(k) + ωγ eT (k)�fk – ω�f T
k �fk ≥ , ()
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where ω >  is a scalar. Adding the left-hand side of () to �Vk yields

�Vk ≤ eT (k + )Pe(k + ) – eT (k)Pe(k) + ωβeT (k)e(k)

+ ωγ eT (k)�fk – ω�f T
k �fk

= ξT
k 
ξk , ()

where ξT
k = [e(k) �fk]T and


 =

[
(A – LC)T P(A – LC) – P + ωβI (A – LC)T P + ωγ I

P(A – LC) + ωγ I P – ωI

]
.

Applying Lemma , 
 <  is equivalent to

� =

⎡
⎢⎣

–P + ωβI (A – LC)T P + ωγ I (A – LC)T P
∗ P – ωI 
∗ ∗ –P

⎤
⎥⎦ < . ()

By denoting R = LT P, the condition () implies � < . Therefore, we have �Vk <  for all
e(k) �=  if () is satisfied. This completes the proof. �

Since the quadratically inner-bounded condition include the Lipschitz condition as a
special case, we immediately have Corollary .

Corollary  Suppose that system () satisfies Assumption  and the observer has the form
of (). Then the error dynamics is asymptotically stable if there exist matrices P >  and R
with appropriate dimensions and a scalar ω >  such that the following LMI is feasible:

⎡
⎢⎣

–P + ωλI AT P – CT R AT P – CT R
∗ P – ωI 
∗ ∗ –P

⎤
⎥⎦ < . ()

The resulting observer gain matrix L is given by L = P–RT .

4 Reduced-order observer design
In this section, we address the reduced-order observer design problem for system () under
Assumption . Note that our design is inspired by the approach developed in [] and
[], but we remove the one-sided Lipschitz restriction and provide a simple observer
synthesis condition. Let ξ (k) denote the reduced state vector to be estimated. Without
loss of generality, assume

z(k) = Hx(k), ()

where H ∈R
(n–p)×n is a matrix so that

[ H
C

]
is nonsingular with

[
H
C

]–

=
[
N M

]
. ()
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We then have

x(k) = Nz(k) + My(k). ()

From (), (), and (), we obtain the following nonlinear reduced form:

z(k + ) = Hx(k + )

= H
(
Ax(k) + Bu(k) + f

(
x(k), y(k)

))
= AZz(k) + HBu(k) + Hg

(
z(k), y(k)

)
+ BZy(k), ()

where AZ := HAN , BZ := HAM, and g(z(k), y(k)) := f (Nz(k) + My(k), y(k)).
Inspired by [], we design a reduced-order observer corresponding to () as follows:

⎧⎪⎨
⎪⎩

ẑ(k + ) = AZẑ(k) + HBu(k) + BZy(k) + Hg(ẑ(k), y(k)) + K(y(k + ) – Cζ (k)),
ζ (k) = ANẑ(k) + AMy(k) + g(ẑ(k), y(k)),
x̂(k) = Nẑ(k) + My(k).

()

Denoting the estimator error by ε(k) := z(k) – ẑ(k) and letting CZ := CAN , we have

K
(
y(k + ) – Cζ (k)

)
= KC

(
x(k + ) – ζ (k)

)
= KC

(
Ax(k) + f

(
x(k), y(k)

)
– ζ (k)

)
= KC

(
ANz(k) + AMy(k) + f

(
Nz(k) + My(k), y(k)

)
– ζ (k)

)
= KCZε(k) + KC�gk , ()

where �gk := g(z(k), y(k)) – g(ẑ(k), y(k)).
From ()-(), we know that the dynamics of the estimation error is governed by

ε(k + ) = (AZ – KCZ)ε(k) + (H – KC)�gk . ()

Now, we have the following theorem.

Theorem  Under Assumption , the proposed reduced-order observer () is an asymp-
totic observer for system () if there exist matrices P >  and K of appropriate dimensions
and a scalar ω >  such that the following matrix inequality is feasible:

⎡
⎢⎣

–NT PN + ωβNT N ωγ NT (AZ – KCZ)T NT P
∗ –ωI (H – KC)T NT P
∗ ∗ –P

⎤
⎥⎦ < . ()

Proof Notice that e(k) = Nε(k). For the error dynamics (), we also consider the
Lyapunov function candidate V (k) = eT (k)Pe(k), i.e., V (k) = εT (k)NT PNε(k). Then the
difference of V (k) along the trajectories of () is given by

�Vk := V (k + ) – V (k) = εT (k + )NT PNε(k + ) – εT (k)NT PNε(k). ()
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By Assumption , the nonlinear function f (x(k), y(k)) is quadratically inner-bounded,
then also the function g(z(k), y(k)) is quadratically inner-bounded with constants βg

and γg . In fact, from Assumption , we can deduce

ωβeT (k)e(k) + ωγ eT (k)�fk – ω�f T
k �fk ≥ , ()

where ω >  is a scalar. Note that e(k) = Nε(k) and �fk = �gk . It follows from () that

ωβεT (k)NT Nε(k) + ωγ εT (k)NT�gk – ω�gT
k �gk ≥ . ()

Adding the left-hand side of () to �Vk yields

�Vk ≤ εT (k + )NT PNε(k + ) – εT (k)NT PNε(k) + ωβεT (k)NT Nε(k)

+ ωγ εT (k)NT�gk – ω�gT
k �gk

= χT
k �χk , ()

where χT
k = [ε(k) �gk]T , and

� =

[
(AZ – KCZ)T

(H – KC)T

]
NT PN

[
AZ – KCZ H – KC

]

+

[
–NT PN + ωβNT N ωγ NT

–ωI

]
.

Note that �Vk <  if � < . Using Lemma , � <  is equivalent to

⎡
⎢⎣

–NT PN + ωβNT N ωγ NT (AZ – KCZ)T NT P
∗ –ωI (H – KC)T NT P
∗ ∗ –P

⎤
⎥⎦ < .

Therefore, if the matrix inequality () has a feasible solution, we have �Vk <  for all
ε(k) �= . By the standard Lyapunov theorem, we know that the estimation error system
is asymptotically stable, which means () is an asymptotic reduced-order observer for
system (). This completes the proof. �

Remark  Compared with the full-order or the reduced-order observer design in [], the
paper removes the one-sided Lipschitz restriction, which significantly reduces the conser-
vatism and complexity of the designs. In fact, in Theorems  and , we only assume that f
satisfies the quadratically inner-bounded condition () and do not employ the one-sided
Lipschitz condition ().

Remark  It should be noted that () is not an LMI. To make it more tractable, we can
formulate it into an LMI by letting P = αI for a prior given scalar α > . In this case, ()
becomes

⎡
⎢⎣

–αNT N + ωβNT N ωγ NT α(AZ – KCZ)T NT

∗ –ωI α(H – KC)T NT

∗ ∗ –αI

⎤
⎥⎦ < . ()
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Similarly, we have Corollary , since the quadratically inner-bounded condition includes
the Lipschitz condition as a special case.

Corollary  Under Assumption , the proposed reduced-order observer () is an asymp-
totic observer for system () if there exist matrices P >  and K of appropriate dimensions
and a scalar ω >  such that the following matrix inequality is feasible:

⎡
⎢⎣

–NT PN + ωλNT N  (AZ – KCZ)T NT P
∗ –ωI (H – KC)T NT P
∗ ∗ –P

⎤
⎥⎦ < . ()

5 Illustrative example
In this section gives a numerical example to illustrate the applications of the proposed
observer design. For convenience, we take the well-known single-link flexible joint robotic
system as an example [, ]. The continuous-time model of the system is described by

{
ẋ(t) = Acx(t) + Bcu(t) + fc(x(t), y(t)),
y(t) = Ccx(t),

()

where

Ac =

⎡
⎢⎢⎢⎣

   
–. –. . 

   
.  –. 

⎤
⎥⎥⎥⎦ ,

Bc =

⎡
⎢⎢⎢⎣


.




⎤
⎥⎥⎥⎦ , Cc =

[
   
   

]

and

fc(x, y) =

⎡
⎢⎢⎢⎣





–. sin(x)

⎤
⎥⎥⎥⎦ .

Let Te be the sample time. Then by using the Euler discretized approach on system (),
we can derive the following discrete-time system model:

{
x(k + ) = Ax(k) + Bu(k) + f (x(k), y(k)),
y(k) = Cx(k),

()

where

A = I + TeAc, B = TeBc, C = Cc, f
(
x(k), y(k)

)
= Tefc

(
x(t), y(t)

)
.
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It is easy to verify that f (x(k), y(k)) is quadratically inner-bounded with β = (.Te)

and γ = . Let the sample time Te = .[s]. To design the full-order observer, we need to
solve the LMI (). By using the Matlab LMI tool, we get

P =

⎡
⎢⎢⎢⎣

.   
 . –. .
 –. . –.
 . –. .

⎤
⎥⎥⎥⎦ ,

R =

[
. –. . –.
. . –. .

]
, ω = ..

Therefore, the full-order observer gain matrix L is given by

L = P–RT =

⎡
⎢⎢⎢⎣

. .
–. .

 .
. .

⎤
⎥⎥⎥⎦ .

On the other hand, the reduced-order observer can be designed by using Theorem . With

H =

[
   
   

]
,

we have

N =

⎡
⎢⎢⎢⎣

 
 
 
 

⎤
⎥⎥⎥⎦ , M =

⎡
⎢⎢⎢⎣

 
 
 
 

⎤
⎥⎥⎥⎦ .

Let α = .. By solving the LMI (), we obtain the reduced-order observer gain matrix

K =

[
 .
 –.

]
.

6 Conclusion
We have addressed the state estimation problem for a general class of nonlinear discrete-
time systems that satisfies the quadratically inner-bounded condition. The system under
consideration need not satisfy the one-sided Lipschitz restriction, which is a common
assumption in some recent literature on observer design for nonlinear discrete-time sys-
tems. We considered both the full-order and the reduced-order observer designs and for-
mulated the observer synthesis condition as an LMI formulation. Finally, we used an ex-
ample on the single-link flexible joint robotic system to illustrate the effectiveness of the
proposed design.
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