154 research outputs found
Metabolic regulators Nampt and Sirt6 serially participate in the macrophage interferon antiviral cascade
Molecular determinants underlying interferon (IFN)-macrophage biology can help delineate enzyme systems, pathways and mechanisms for enabling host-directed therapeutic approaches against infection. Notably, while the IFN antiviral response is known to be directly coupled to mevalonate-sterol biosynthesis pathway mechanistic insight for providing host pathway-therapeutic targets, remain incomplete. Here, we show that Nampt and Sirt6 are coordinately regulated upon immune activation of macrophages and contribute to the IFN-sterol antiviral response. In silico analysis of the Nampt and Sirt6 promoter regions identified multiple core immune gene-regulatory transcription factor sites, including Stat1, implicating a molecular link to IFN control. Experimentally, we show using a range of genetically IFN-defective macrophages that the expression of Nampt is stringently regulated by the Jak/Stat-pathway while Sirt6 activation is temporally displaced in a partial IFN-dependent manner. We further show that pharmacological inhibition of Nampt and small interfering RNA (siRNA)-mediated inhibition of Nampt and Sirt6 promotes viral growth of cytomegalovirus in both fibroblasts and macrophages. Our results support the notion of pharmacologically exploiting immune regulated enzyme systems of macrophages for use as an adjuvant-based therapy for augmenting host protective pathway responses to infection
Integrative analysis of macrophage ribo-Seq and RNA-Seq data define glucocorticoid receptor regulated inflammatory response genes into distinct regulatory classes
Glucocorticoids such as dexamethasone (Dex) are widely used to treat both acute and chronic inflammatory conditions. They regulate immune responses by dampening cell-mediated immunity in a glucocorticoid receptor (GR)-dependent manner, by suppressing the expression of pro-inflammatory cytokines and chemokines and by stimulating the expression of anti-inflammatory mediators. Despite its evident clinical benefit, the mechanistic underpinnings of the gene regulatory networks transcriptionally controlled by GR in a context-specific manner remain mysterious. Next generation sequencing methods such mRNA sequencing (RNA-seq) and Ribosome profiling (ribo-seq) provide tools to investigate the transcriptional and post-transcriptional mechanisms that govern gene expression. Here, we integrate matched RNA-seq data with ribo-seq data from human acute monocytic leukemia (THP-1) cells treated with the TLR4 ligand lipopolysaccharide (LPS) and with Dex, to investigate the global transcriptional and translational regulation (translational efficiency, ΔTE) of Dex-responsive genes. We find that the expression of most of the Dex-responsive genes are regulated at both the transcriptional and the post-transcriptional level, with the transcriptional changes intensified on the translational level. Overrepresentation pathway analysis combined with STRING protein network analysis and manual functional exploration, identified these genes to encode immune effectors and immunomodulators that contribute to macrophage-mediated immunity and to the maintenance of macrophage-mediated immune homeostasis. Further research into the translational regulatory network underlying the GR anti-inflammatory response could pave the way for the development of novel immunomodulatory therapeutic regimens with fewer undesirable side effects
Genome wide association study of Preserved Ratio Impaired Spirometry (PRISm)
Background: Preserved Ratio Impaired Spirometry (PRISm) is defined as FEV1 <80% predicted, FEV1/FVC ≥0.70. PRISm is associated with respiratory symptoms and co-morbidities. Our objective was to discover novel genetic signals for PRISm and see if they provide insight into the pathogenesis of PRISm and associated co-morbidities.Methods: We undertook a genome-wide association study (GWAS) of PRISm in UK Biobank participants (Stage 1), and selected SNPs reaching genome-wide significance for replication in 13 cohorts (Stage 2). A combined meta-analysis of Stage 1 and Stage 2 was done to determine top SNPs. We used cross-trait Linkage Disequilibrium score regression to estimate genome-wide genetic correlation between PRISM and pulmonary and extra-pulmonary traits. Phenome-wide association studies of top SNPs was performed. Results: 22 signals reached significance in the joint meta-analysis, including four signals novel for lung function. A strong genome-wide genetic correlation (rg) between PRISm and spirometric COPD (rg = 0.62, p-value <0.001) was observed, and genetic correlation with type II diabetes (rg = 0.12, p-value 0.007). PheWAS showed that 18 of 22 signals were associated with diabetic traits and 7 with blood pressure traits.Discussion: This is the first GWAS to successfully identify SNPs associated with PRISm. Four of the signals; rs7652391 (nearest gene MECOM), rs9431040 (HLX), rs62018863 (TMEM114) and rs185937162 (HLA-B) have not been described in association with lung function before, demonstrating the utility of using different lung function phenotypes in GWAS. Genetic factors associated with PRISm are strongly correlated with risk of both other lung diseases and extra-pulmonary co-morbidity.<br/
A European research agenda for somatic symptom disorders, bodily distress disorders, and functional disorders: Results of an estimate-talk-estimate delphi expert study
Background: Somatic Symptom Disorders (SSD), Bodily Distress Disorders (BDD) and functional disorders (FD) are associated with high medical and societal costs and pose a substantial challenge to the population and health policy of Europe. To meet this challenge, a specific research agenda is needed as one of the cornerstones of sustainable mental health research and health policy for SSD, BDD, and FD in Europe.
Aim: To identify the main challenges and research priorities concerning SSD, BDD, and FD from a European perspective.
Methods: Delphi study conducted from July 2016 until October 2017 in 3 rounds with 3 workshop meetings and 3 online surveys, involving 75 experts and 21 European countries. EURONET-SOMA and the European Association of Psychosomatic Medicine (EAPM) hosted the meetings.
Results: Eight research priorities were identified: (1) Assessment of diagnostic profiles relevant to course and treatment outcome. (2) Development and evaluation of new, effective interventions. (3) Validation studies on questionnaires or semi-structured interviews that assess chronic medical conditions in this context. (4) Research into patients preferences for diagnosis and treatment. (5) Development of new methodologic designs to identify and explore mediators and moderators of clinical course and treatment outcomes (6). Translational research exploring how psychological and somatic symptoms develop from somatic conditions and biological and behavioral pathogenic factors. (7) Development of new, effective interventions to personalize treatment. (8) Implementation studies of treatment interventions in different settings, such as primary care, occupational care, general hospital and specialty mental health settings. The general public and policymakers will benefit from the development of new, effective, personalized interventions for SSD, BDD, and FD, that will be enhanced by translational research, as well as from the outcomes of research into patient involvement, GP-patient communication, consultation-liaison models and implementation.
Conclusion: Funding for this research agenda, targeting these challenges in coordinated research networks such as EURONET-SOMA and EAPM, and systematically allocating resources by policymakers to this critical area in mental and physical well-being is urgently needed to improve efficacy and impact for diagnosis and treatment of SSD, BDD, and FD across Europe
Aberrant intestinal microbiota in individuals with prediabetes
Aims/hypothesis: Individuals with type 2 diabetes have aberrant intestinal microbiota. However, recent studies suggest that metformin alters the composition and functional potential of gut microbiota, thereby interfering with the diabetes-related microbial signatures. We tested whether specific gut microbiota profiles are associated with prediabetes (defined as fasting plasma glucose of 6.1-7.0 mmol/l or HbA1c of 42-48 mmol/mol [6.0-6.5%]) and a range of clinical biomarkers of poor metabolic health. Methods: In the present case-control study, we analysed the gut microbiota of 134 Danish adults with prediabetes, overweight, insulin resistance, dyslipidaemia and low-grade inflammation and 134 age-and sex-matched individuals with normal glucose regulation. Results: We found that five bacterial genera and 36 operational taxonomic units (OTUs) were differentially abundant between individuals with prediabetes and those with normal glucose regulation. At the genus level, the abundance of Clostridium was decreased (mean log2 fold change -0.64 (SEM 0.23), p adj = 0.0497), whereas the abundances of Dorea, [Ruminococcus], Sutterella and Streptococcus were increased (mean log2 fold change 0.51 (SEM 0.12), p adj = 5 x 10-4; 0.51 (SEM 0.11), p adj = 1 x 10-4; 0.60 (SEM 0.21), p adj = 0.0497; and 0.92 (SEM0.21), p adj = 4 x 10-4, respectively). The two OTUs that differed the most were a member of the order Clostridiales (OTU 146564) and Akkermansia muciniphila, which both displayed lower abundance among individuals with prediabetes (mean log2 fold change -1.74 (SEM0.41), p adj = 2 x 10-3 and -1.65 (SEM0.34), p adj = 4 x 10-4, respectively). Faecal transfer from donors with prediabetes or screen-detected, drug-naive type 2 diabetes to germfree Swiss Webster or conventional C57BL/6 J mice did not induce impaired glucose regulation in recipient mice. Conclusions/interpretation: Collectively, our data show that individuals with prediabetes have aberrant intestinal microbiota characterised by a decreased abundance of the genus Clostridium and the mucin-degrading bacterium A. muciniphila. Our findings are comparable to observations in overt chronic diseases characterised by low-grade inflammation
European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation
Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities
European and multi-ancestry genome-wide association meta-analysis of atopic dermatitis highlights importance of systemic immune regulation
Atopic dermatitis (AD) is a common inflammatory skin condition and prior genome-wide association studies (GWAS) have identified 71 associated loci. In the current study we conducted the largest AD GWAS to date (discovery N = 1,086,394, replication N = 3,604,027), combining previously reported cohorts with additional available data. We identified 81 loci (29 novel) in the European-only analysis (which all replicated in a separate European analysis) and 10 additional loci in the multi-ancestry analysis (3 novel). Eight variants from the multi-ancestry analysis replicated in at least one of the populations tested (European, Latino or African), while two may be specific to individuals of Japanese ancestry. AD loci showed enrichment for DNAse I hypersensitivity and eQTL associations in blood. At each locus we prioritised candidate genes by integrating multi-omic data. The implicated genes are predominantly in immune pathways of relevance to atopic inflammation and some offer drug repurposing opportunities.</p
- …