2,937 research outputs found
Energy Loss from Reconnection with a Vortex Mesh
Experiments in superfluid 4He show that at low temperatures, energy
dissipation from moving vortices is many orders of magnitude larger than
expected from mutual friction. Here we investigate other mechanisms for energy
loss by a computational study of a vortex that moves through and reconnects
with a mesh of small vortices pinned to the container wall. We find that such
reconnections enhance energy loss from the moving vortex by a factor of up to
100 beyond that with no mesh. The enhancement occurs through two different
mechanisms, both involving the Kelvin oscillations generated along the vortex
by the reconnections. At relatively high temperatures the Kelvin waves increase
the vortex motion, leading to more energy loss through mutual friction. As the
temperature decreases, the vortex oscillations generate additional reconnection
events between the moving vortex and the wall, which decrease the energy of the
moving vortex by transfering portions of its length to the pinned mesh on the
wall.Comment: 9 pages, 10 figure
Conditions for one-dimensional supersonic flow of quantum gases
One can use transsonic Bose-Einstein condensates of alkali atoms to establish
the laboratory analog of the event horizon and to measure the acoustic version
of Hawking radiation. We determine the conditions for supersonic flow and the
Hawking temperature for realistic condensates on waveguides where an external
potential plays the role of a supersonic nozzle. The transition to supersonic
speed occurs at the potential maximum and the Hawking temperature is entirely
determined by the curvature of the potential
Dissipative Transport of a Bose-Einstein Condensate
We investigate the effects of impurities, either correlated disorder or a
single Gaussian defect, on the collective dipole motion of a Bose-Einstein
condensate of Li in an optical trap. We find that this motion is damped at
a rate dependent on the impurity strength, condensate center-of-mass velocity,
and interatomic interactions. Damping in the Thomas-Fermi regime depends
universally on the disordered potential strength scaled to the condensate
chemical potential and the condensate velocity scaled to the peak speed of
sound. The damping rate is comparatively small in the weakly interacting
regime, and the damping in this case is accompanied by strong condensate
fragmentation. \textit{In situ} and time-of-flight images of the atomic cloud
provide evidence that this fragmentation is driven by dark soliton formation.Comment: 14 pages, 20 figure
Quantum phase space picture of Bose-Einstein Condensates in a double well: Proposals for creating macroscopic quantum superposition states and a study of quantum chaos
We present a quantum phase space model of Bose-Einstein condensate (BEC) in a
double well potential. In a two-mode Fock-state analysis we examine the
eigenvectors and eigenvalues and find that the energy correlation diagram
indicates a transition from a delocalized to a fragmented regime. Phase space
information is extracted from the stationary quantum states using the Husimi
distribution function. It is shown that the quantum states are localized on the
known classical phase space orbits of a nonrigid physical pendulum, and thus
the novel phase space characteristics of a nonrigid physical pendulum such as
the motions are seen to be a property of the exact quantum states. Low
lying states are harmonic oscillator like libration states while the higher
lying states are Schr\"odinger cat-like superpositions of two pendulum rotor
states. To study the dynamics in phase space, a comparison is made between a
displaced quantum wavepacket and the trajectories of a swarm of points in
classical phase space. For a driven double well, it is shown that the classical
chaotic dynamics is manifest in the dynamics of the quantum states pictured
using the Husimi distribution. Phase space analogy also suggests that a
phase displaced wavepacket put on the unstable fixed point on a separatrix will
bifurcate to create a superposition of two pendulum rotor states - a
Schr\"odinger cat state (number entangled state) for BEC. It is shown that the
choice of initial barrier height and ramping, following a phase
imprinting on the condensate, can be used to generate controlled entangled
number states with tunable extremity and sharpness.Comment: revised version, 13 pages, 13 figure
A String Approximation for Cooper Pair in High-T superconductivity
It is assumed that in some sense the High-T superconductivity is similar
to the quantum chromodynamics (QCD). This means that the phonons in High-T
superconductor have the strong interaction between themselves like to gluons in
the QCD. At the experimental level this means that in High-T superconductor
exists the nonlinear sound waves. It is possible that the existence of the
strong phonon-phonon interaction leads to the confinement of phonons into a
phonon tube (PT) stretched between two Cooper electrons like a hypothesized
flux tube between quark and antiquark in the QCD. The flux tube in the QCD
brings to a very strong interaction between quark-antiquark, the similar
situation can be in the High-T superconductor: the presence of the PT can
essentially increase the binding energy for the Cooper pair. In the first rough
approximation the PT can be approximated as a nonrelativistic string with
Cooper electrons at the ends. The BCS theory with such potential term is
considered. It is shown that Green's function method in the superconductivity
theory is a realization of discussed Heisenberg idea proposed by him for the
quantization of nonlinear spinor field. A possible experimental testing for the
string approximation of the Cooper pair is offered.Comment: Essential changes: (a) the section is added in which it is shown that
Green's function method in the superconductivity theory is a realization of
discussed Heisenberg quantization method; (b) Veneziano amplitude is
discussed as an approximation for the 4-point Green's function in High-T_c;
(c) it is shown that Eq.(53) has more natural solution on the layer rather
than on 3 dimensional spac
The high-lying Li levels at excitation energy around 21 MeV
The H+He cluster structure in Li was investigated by the
H(,H He)n kinematically complete experiment at the incident
energy = 67.2 MeV. We have observed two resonances at =
21.30 and 21.90 MeV which are consistent with the He(H, )Li
analysis in the Ajzenberg-Selove compilation. Our data are compared with the
previous experimental data and the RGM and CSRGM calculations.Comment: 12 pages, 6 figures. Accepted for publication in J. Phys. Soc. Jp
Evolution of an elliptical bubble in an accelerating extensional flow
Mathematical models that describe the dynamical behavior of a thin gas bubble embedded in a glass fiber during a fiber drawing process have been discussed and analyzed.
The starting point for the mathematical modeling was the equations presented in [1] for a glass fiber with a hole undergoing extensional flow. These equations were reconsidered here with the additional reduction that the hole, i.e. the gas bubble, was thin as compared to the radius of the fiber and of finite extent. The primary model considered was one in which the mass of the gas inside the bubble was fixed. This fixed-mass model involved equations for the axial velocity and fiber radius, and equations for the radius of the bubble and the gas pressure inside the bubble. The model equations assumed that the temperature of the furnace of the drawing tower was known.
The governing equations of the bubble are hyperbolic and predict that the bubble cannot extend beyond the limiting characteristics specified by the ends of the initial bubble shape. An analysis of pinch-off was performed, and it was found that pinch-off can occur, depending on the parameters of the model, due to surface tension when the bubble radius is small.
In order to determine the evolution of a bubble, a numerical method of solution was presented. The method was used to study the evolution of two different initial bubble shapes, one convex and the other non-convex. Both initial bubble shapes had fore-aft symmetry, and it was found that the bubbles stretched and elongated severely during the drawing process. For the convex shape, fore-aft symmetry was lost in the middle of the drawing process, but the symmetry was re-gained by the end of the drawing tower. A small amount of pinch-off was observed at each end for this case, so that the final bubble length was slightly shorter than its theoretical maximum length. For the non-convex initial shape, pinch-off occurred in the middle of the bubble resulting in two bubbles by the end of the fiber draw.
The two bubbles had different final pressures and did not have fore-aft symmetry.
An extension of the fixed-mass model was considered in which the gas in the bubble was allowed to diffuse into the surrounding glass. The governing equations for this leaky-mass model were developed and manipulated into a form suitable for a numerical treatment
Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability
The reaction rates of neutron capture reactions on light nuclei are important
for reliably simulating nucleosynthesis in a variety of stellar scenarios.
Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are
calculated in the framework of a hybrid compound and direct capture model. The
results are tabulated and compared with the results of previous calculations as
well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for
publication in Phys. Rev.
Indications for the Nonexistence of Three-Neutron Resonances near the Physical Region
The pending question of the existence of three-neutron resonances near the
physical energy region is reconsidered. Finite rank neutron-neutron forces are
used in Faddeev equations, which are analytically continued into the unphysical
energy sheet below the positive real energy axis. The trajectories of the
three-neutron S-matrix poles in the states of total angular momenta and parity
J^\pi=1/2 +- and J^\pi= 3/2 +- are traced out as a function of artificial
enhancement factors of the neutron-neutron forces. The final positions of the
S-matrix poles removing the artificial factors are found in all cases to be far
away from the positive real energy axis, which provides a strong indication for
the nonexistence of nearby three-neutron resonances. The pole trajectories
close to the threshold E=0 are also predicted out of auxiliary generated
three-neutron bound state energies using the Pad\'e method and agree very well
with the directly calculated ones.Comment: 20 pages, 7 Postscript figures, fig.1 is corrected, uses relax.st
- …
