16,407 research outputs found

    The case for the bulk nature of the spectroscopic Luttinger liquid signatures observed in angle resolved photoemission of Li0.9Mo6O17

    Full text link
    Angle resolved photoemission spectroscopy (ARPES) has been performed on quasi-one dimensional Li0.9Mo6O17 using photon energy 500 eV. Measured band dispersions are in agreement with those from both low photon energy measurements and band structure calculations. The momentum integrated ARPES spectrum is well fit by the finite temperature Luttinger liquid (LL)spectral function, with an anomalous exponent 0.6 that is the same within experimental uncertainty as the value found with photon energy 30 eV. These identical findings at both low and high photon energies are entirely consistent with reasoning based on the crystal structure, that the quasi-one dimensional chains lie two layers below the cleavage plane so that the observed spectroscopic LL behavior of Li0.9Mo6O17 is a bulk property.Comment: Accepted for publication in Physical Review

    Temperature and Kinematics of CIV Absorption Systems

    Full text link
    We use Keck HIRES spectra of three intermediate redshift QSOs to study the physical state and kinematics of the individual components of CIV selected heavy element absorption systems. Fewer than 8 % of all CIV lines with column densities greater than 10^{12.5} cm^{-2} have Doppler parameters b < 6 km/s. A formal decomposition into thermal and non-thermal motion using the simultaneous presence of SiIV gives a mean thermal Doppler parameter b_{therm}(CIV) = 7.2 km/s, corresponding to a temperature of 38,000 K although temperatures possibly in excess of 300,000 K occur occasionally. We also find tentative evidence for a mild increase of temperature with HI column density. Non-thermal motions within components are typically small (< 10 km/s) for most systems, indicative of a quiescent environment. The two-point correlation function (TPCF) of CIV systems on scales up to 500 km/s suggests that there is more than one source of velocity dispersion. The shape of the TPCF can be understood if the CIV systems are caused by ensembles of objects with the kinematics of dwarf galaxies on a small scale, while following the Hubble flow on a larger scale. Individual high redshift CIV components may be the building blocks of future normal galaxies in a hierarchical structure formation scenario.Comment: submitted to the ApJ Letters, March 16, 1996 (in press); (13 Latex pages, 4 Postscript figures, and psfig.sty included

    Photoemission study of (V1x_{1-x}Mx_x)2_2O3_3 (M=Cr, Ti)

    Full text link
    We present high-resolution bulk-sensitive photoemission spectra of (V1x_{1-x}Mx_x)2_2O3_3 (M=Cr, Ti). The measurements were made for the paramagnetic metal (PM), paramagnetic insulator (PI), and antiferromagnetic insulator (AFI) phases of (V1x_{1-x}Mx_x)2_2O3_3 with the samples of xx = 0, 0.012, and 0.028 for Cr-doping and xx = 0.01 for Ti-doping. In the PM phase, we observe a prominent quasiparticle peak in general agreement with theory, which combines dynamical mean-field theory with the local density approximation (LDA+DMFT). The quasiparticle peak shows a significantly larger peak width and weight than in the theory. For both the PI and AFI phases, the vanadium 3d parts of the valence spectra are not simple one peak structures. For the PI phase, there is not yet a good theoretical understanding of these structures. The size of the electron removal gap increases, and spectral weight accumulates in the energy range closer to the chemical potential, when the PI to AFI transition occurs. Spectra taken in the same phases with different compositions show interesting monotonic changes as the dopant concentration increases, regardless of the dopant species. With increased Cr-doping, the AFI phase gap decreases and the PI phase gap increases.Comment: 13 pages, 16 figures. accepted for publication in Physical Review

    Filling of the Mott-Hubbard gap in the high temperature photoemission spectrum of (V_0.972Cr_0.028)_2O_3

    Full text link
    Photoemission spectra of the paramagnetic insulating (PI) phase of (V_0.972Cr_0.028)_2O_3, taken in ultra high vacuum up to the unusually high temperature (T) of 800 K, reveal a property unique to the Mott-Hubbard (MH) insulator and not observed previously. With increasing T the MH gap is filled by spectral weight transfer, in qualitative agreement with high-T theoretical calculations combining dynamical mean field theory and band theory in the local density approximation.Comment: 4 pages, 4 figure

    A Simple Model for Anisotropic Step Growth

    Get PDF
    We consider a simple model for the growth of isolated steps on a vicinal crystal surface. It incorporates diffusion and drift of adatoms on the terrace, and strong step and kink edge barriers. Using a combination of analytic methods and Monte Carlo simulations, we study the morphology of growing steps in detail. In particular, under typical Molecular Beam Epitaxy conditions the step morphology is linearly unstable in the model and develops fingers separated by deep cracks. The vertical roughness of the step grows linearly in time, while horizontally the fingers coarsen proportional to t0.33t^{0.33}. We develop scaling arguments to study the saturation of the ledge morphology for a finite width and length of the terrace.Comment: 20 pages, 12 figures; [email protected]

    Luttinger liquid ARPES spectra from samples of Li0.9_{0.9}Mo6_6O17_{17} grown by the temperature gradient flux technique

    Full text link
    Angle resolved photoemission spectroscopy line shapes measured for quasi-one-dimensional Li0.9_{0.9}Mo6_6O17_{17} samples grown by a temperature gradient flux technique are found to show Luttinger liquid behavior, consistent with all previous data by us and other workers obtained from samples grown by the electrolyte reduction technique. This result eliminates the sample growth method as a possible origin of considerable differences in photoemission data reported in previous studies of Li0.9_{0.9}Mo6_6O17_{17}.Comment: Some text adde

    Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas

    Get PDF
    Two-dimensional electron gases (2DEGs) in SrTiO3_3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the dd-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital, and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally-enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3_3-based 2DEGs, and yield new microscopic insights on their functional properties.Comment: 10 pages including supplementary information, 4+4 figure

    Prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3

    Full text link
    We present the first observation of a prominent quasi-particle peak in the photoemission spectrum of the metallic phase of V_2O_3 and report new spectral calculations that combine the local density approximation with the dynamical mean-field theory (using quantum Monte Carlo simulations) to show the development of such a distinct peak with decreasing temperature. The experimental peak width and weight are significantly larger than in the theory.Comment: 4 pages, 3 figures, supercedes cond-mat/010804

    Slow light in paraffin-coated Rb vapor cells

    Full text link
    We present preliminary results from an experimental study of slow light in anti-relaxation-coated Rb vapor cells, and describe the construction and testing of such cells. The slow ground state decoherence rate allowed by coated cell walls leads to a dual-structured electromagnetically induced transparency (EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad pedestal. Such dual-structure EIT permits optical probe pulses to propagate with greatly reduced group velocity on two time scales. We discuss ongoing efforts to optimize the pulse delay in such coated cell systems.Comment: 6 pages, 6 figures, submitted to Journal of Modern Optic

    A new multi-center approach to the exchange-correlation interactions in ab initio tight-binding methods

    Full text link
    A new approximate method to calculate exchange-correlation contributions in the framework of first-principles tight-binding molecular dynamics methods has been developed. In the proposed scheme on-site (off-site) exchange-correlation matrix elements are expressed as a one-center (two-center) term plus a {\it correction} due to the rest of the atoms. The one-center (two-center) term is evaluated directly, while the {\it correction} is calculated using a variation of the Sankey-Niklewski \cite{Sankey89} approach generalized for arbitrary atomic-like basis sets. The proposed scheme for exchange-correlation part permits the accurate and computationally efficient calculation of corresponding tight-binding matrices and atomic forces for complex systems. We calculate bulk properties of selected transition (W,Pd), noble (Au) or simple (Al) metals, a semiconductor (Si) and the transition metal oxide TiO2O_2 with the new method to demonstrate its flexibility and good accuracy.Comment: 17 pages, 5 figure
    corecore