21 research outputs found
A description of n-ary semigroups polynomial-derived from integral domains
We provide a complete classification of the n-ary semigroup structures
defined by polynomial functions over infinite commutative integral domains with
identity, thus generalizing G{\l}azek and Gleichgewicht's classification of the
corresponding ternary semigroups
Characterizations of quasitrivial symmetric nondecreasing associative operations
We provide a description of the class of n-ary operations on an arbitrary
chain that are quasitrivial, symmetric, nondecreasing, and associative. We also
prove that associativity can be replaced with bisymmetry in the definition of
this class. Finally we investigate the special situation where the chain is
finite
Associative polynomial functions over bounded distributive lattices
The associativity property, usually defined for binary functions, can be
generalized to functions of a given fixed arity n>=1 as well as to functions of
multiple arities. In this paper, we investigate these two generalizations in
the case of polynomial functions over bounded distributive lattices and present
explicit descriptions of the corresponding associative functions. We also show
that, in this case, both generalizations of associativity are essentially the
same.Comment: Final versio