7,916 research outputs found

    Surface flux pinning in superconducting amorphous (Mo0.6Ru0.4)B18

    Get PDF
    Superconducting critical current density was measured as a function of a perpendicular applied magnetic field in glassy (Mo0.6Ru0.4)82B18. The pinning force density was observed to depend linearly on 1/w, where w is the sample width measured perpendicular to both the current and field. This dependence is attributed to pinning by the sample edges. The bulk pinning contribution can be separated from the edge pinning contribution by extrapolation of the Fp vs 1/w curve. The edge contribution of the flux pinning was nearly eliminated by electrolytically polishing the sample. The contribution of the flux pinning profile due to edge pinning is analyzed in terms of the dynamic pinning model modified for edge pinning

    A Quantitative Non-radial Oscillation Model for the Subpulses in PSR B0943+10

    Get PDF
    In this paper, we analyze time series measurements of PSR B0943+10 and fit them with a non-radial oscillation model. The model we apply was first developed for total intensity measurements in an earlier paper, and expanded to encompass linear polarization in a companion paper to this one. We use PSR B0943+10 for the initial tests of our model because it has a simple geometry, it has been exhaustively studied in the literature, and its behavior is well-documented. As prelude to quantitative fitting, we have reanalyzed previously published archival data of PSR B0943+10 and uncovered subtle but significant behavior that is difficult to explain in the framework of the drifting spark model. Our fits of a non-radial oscillation model are able to successfully reproduce the observed behavior in this pulsar.Comment: 45 pages, 16 figures, accepted Ap

    Deep space monitor communication satellite system Patent

    Get PDF
    Elimination of tracking occultation problems occurring during continuous monitoring of interplanetary missions by using Earth orbiting communications satellit

    Late quaternary time series of Arabian Sea productivity: Global and regional signals

    Get PDF
    Modern annual floral and faunal production in the northwest Arabian Sea derives primarily from upwelling induced by strong southwest winds during June, July, and August. Indian Ocean summer monsoon winds are, in turn, driven by differential heating between the Asian continent and the Indian ocean to the south. This differential heating produces a strong pressure gradient resulting in southwest monsoon winds and both coastal and divergent upwelling off the Arabian Peninsula. Over geologic time scales (10(exp 4) to 10(exp 6) years), monsoon wind strength is sensitive to changes in boundary conditions which influence this pressure gradient. Important boundary conditions include the seasonal distribution of solar radiation, global ice volume, Indian Ocean sea surface temperature, and the elevation and albedo of the Asian continent. To the extent that these factors influence monsoon wind strength, they also influence upwelling and productivity. In addition, however, productivity associated with upwelling can be decoupled from the strength of the summer monsoon winds via ocean mechanisms which serve to inhibit or enhance the nutrient supply in the intermediate waters of the Indian Ocean, the source for upwelled waters in the Arabian Sea. To differentiate productivity associated with wind-induced upwelling from that associated with other components of the system such as nutrient sequestering in glacial-age deep waters, we employ a strategy which monitors independent components of the oceanic and atmospheric subsystems. Using sediment records from the Owen Ridge, northwest Arabian Sea, we monitor the strength of upwelling and productivity using two independent indicators, percent G. bulloides and opal accumulation. We monitor the strength of southwest monsoon winds by measuring the grain-size of lithogenic dust particles blown into the Arabian Sea from the surrounding deserts of the Somali and Arabian Peninsulas. Our current hypothesis is that the variability associated with the 41 kyr power in the G. bulloides and opal accumulation records derive from nutrient availability in the intermediate waters which are upwelled via monsoon winds. This hypothesis is testable by comparison with Cd records of intermediate and deep waters of the Atlantic and Indian Ocean

    Sub-Natural Linewidth Single Photons from a Quantum Dot

    Full text link
    The observation of quantum dot resonance fluorescence enabled a new solid-state approach to generating single photons with a bandwidth almost as narrow as the natural linewidth of a quantum dot transition. Here, we operate in the Heitler regime of resonance fluorescence to generate sub-natural linewidth and high-coherence quantum light from a single quantum dot. The measured single-photon bandwidth exhibits a 30-fold reduction with respect to the radiative linewidth of the QD transition and the single photons exhibit coherence properties inherited from the excitation laser. In contrast, intensity-correlation measurements reveal that this photon source maintains a high degree of antibunching behaviour on the order of the transition lifetime with vanishing two-photon scattering probability. This light source will find immediate applications in quantum cryptography, measurement-based quantum computing and, in particular, deterministic generation of high-fidelity distributed entanglement among independent and even disparate quantum systems

    Dutch corporate liquidity mangement: New evidence on aggregation

    Get PDF
    In this paper we investigate Dutch corporate liquidity management in general, and target adjustment behaviour in particular. To this purpose, we use a simple error correction model of corporate liquidity holdings applied to firm-level data for the period 1977-1997. We confirm the existence of long-run liquidity targets at the firm level. We also find that changes in liquidity holdings are driven by short-run shocks as well as the urge to converge towards targeted liquidity levels. The rate of target convergence is higher when we include more firm-specific information in the target. This result supports the idea that increased precision in defining liquidity targets associates with a faster observed rate of target convergence. It also suggests that the slow speeds of adjustment obtained in many macro studies on money demand are artefacts of aggregation bias.corporate liquidity demand, precautionary liquidity

    Vertical Price Leadership on Local Maize Markets in Benin

    Get PDF
    This paper considers vertical price relationships between wholesalers and retailers on five local maize markets in Benin. We show that if the common factor and the long-run disequilibrium error are not explicitly taken into account in testing the channel model, one can easily be wrong about how restrictions on the error-correction structure must be interpreted in terms of economic power in the channel. The empirical results show interesting differences between markets and reveal that retailers play a more prominent role in the price formation process than generally assumed in the literature. Retailers in the two major towns do not allow wholesalers to behave as vertical price leaders, but in the two larger rural centers, wholesalers involved in arbitrage among urban markets are able to influence price formation.Vertical price leadership, Marketing channels, Cointegration, Common Factor, Benin, Demand and Price Analysis, C32, D40, L10, O18, Q13,

    Generation of frequency shifted picosecond pulses with low temporal jitter

    Get PDF
    Transient stimulated Raman scattering is used for the generation of a frequency shifted picosecond light pulse; part of this Raman shifted pulse is subsequently coherently scattered at a material excitation of a second Raman cell. Starting with the second harmonic pulse (tp = 4 ps) of a mode-locked Nd : glass laser system, both the stimulated and the coherently produced pulses have durations of 2.3 ps at different wavelengths. By the appropriate choice of the Raman medium pulses between 13 000 and 21 000 cm-1 can be generated. The coherent generation process minimizes the temporal jitter between the two pulses and allows to obtain a high time resolution of better than 0.3 ps in excite and probe experiments
    corecore