2,181 research outputs found
STEREO and Wind Observations of Intense Cyclotron Harmonic Waves at the Earth's Bow Shock and Inside the Magnetosheath
We present the first observations of electron cyclotron harmonic waves at the Earth's bow shock from STEREO and Wind burst waveform captures. These waves are observed at magnetic field gradients at a variety of shock geometries ranging from quasi-parallel to nearly perpendicular along with whistler mode waves, ion acoustic waves, and electrostatic solitary waves. Large amplitude cyclotron harmonic waveforms are also observed in the magnetosheath in association with magnetic field gradients convected past the bow shock. Amplitudes of the cyclotron harmonic waves range from a few tens to more than 500 millivolts/meter peak-peak. A comparison between the short (15 meters) and long (100 meters) Wind spin plane antennas shows a similar response at low harmonics and a stronger response on the short antenna at higher harmonics. This indicates that wavelengths are not significantly larger than 100 meters, consistent with the electron cyclotron radius. Waveforms are broadband and polarizations are distinctively comma-shaped with significant power both perpendicular and parallel to the magnetic field. Harmonics tend to be more prominent in the perpendicular directions. These observations indicate that the waves consist of a combination of perpendicular Bernstein waves and field-aligned waves without harmonics. A likely source is the electron cyclotron drift instability which is a coupling between Bernstein and ion acoustic waves. These waves are the most common type of high-frequency wave seen by STEREO during bow shock crossings and magnetosheath traversals and our observations suggest that they are an important component of the high-frequency turbulent spectrum in these regions
Efficient indexing of necklaces and irreducible polynomials over finite fields
We study the problem of indexing irreducible polynomials over finite fields,
and give the first efficient algorithm for this problem. Specifically, we show
the existence of poly(n, log q)-size circuits that compute a bijection between
{1, ... , |S|} and the set S of all irreducible, monic, univariate polynomials
of degree n over a finite field F_q. This has applications in pseudorandomness,
and answers an open question of Alon, Goldreich, H{\aa}stad and Peralta[AGHP].
Our approach uses a connection between irreducible polynomials and necklaces
( equivalence classes of strings under cyclic rotation). Along the way, we give
the first efficient algorithm for indexing necklaces of a given length over a
given alphabet, which may be of independent interest
Mercury Orbiter: Report of the Science Working Team
The results are presented of the Mercury Orbiter Science Working Team which held three workshops in 1988 to 1989 under the auspices of the Space Physics and Planetary Exploration Divisions of NASA Headquarters. Spacecraft engineering and mission design studies at the Jet Propulsion Lab were conducted in parallel with this effort and are detailed elsewhere. The findings of the engineering study, summarized herein, indicate that spin stabilized spacecraft carrying comprehensive particles and fields experiments and key planetology instruments in high elliptical orbits can survive and function in Mercury orbit without costly sun shields and active cooling systems
Microscopy and supporting data for osteoblast integration within an electrospun fibrous network.
This data article contains data related to the research article entitled "3D imaging of cell interactions with electrospun PLGA nanofiber membranes for bone regeneration" by Stachewicz et al. [1]. In this paper we include additional data showing degradation analysis of poly(d,l-lactide-co-glycolide acid) (PLGA) electrospun fibers in medium and air using fiber diameter distribution histograms. We also describe the steps used in "slice and view" tomography techniques with focused ion beam (FIB) microscopy and scanning electron microscopy (SEM) and detail the image analysis to obtain 3D reconstruction of osteoblast cell integration with electrospun network of fibers. Further supporting data and detailed information on the quantification of cell growth within the electrospun nanofiber membranes is provided
Large amplitude solitary waves in and near the Earth's magnetosphere, magnetopause and bow shock: Polar and Cluster observations
International audienceSolitary waves with large electric fields (up to 100's of mV/m) have been observed throughout the magnetosphere and in the bow shock. We discuss observations by Polar at high altitudes ( ~ 4-8 RE ), during crossings of the plasma sheet boundary and cusp, and new measurements by Polar at the equatorial magnetopause and by Cluster near the bow shock, in the cusp and at the plasma sheet boundary. We describe the results of a statistical study of electron solitary waves observed by Polar at high altitudes. The mean solitary wave duration was ~ 2 ms. The waves have velocities from ~ 1000 km/s to > 2500 km/s. Observed scale sizes (parallel to the magnetic field) are on the order of 1-10lD, with eF/kTe from ~ 0.01 to O(1). The average speed of solitary waves at the plasma sheet boundary is faster than the average speed observed in the cusp and at cusp injections. The amplitude increases with both velocity and scale size. These observations are all consistent with the identification of the solitary waves as electron hole modes. We also report the discovery of solitary waves at the magnetopause, observed in Polar data obtained at the subsolar equatorial magnetopause. Both positive and negative potential structures have been observed with amplitudes up to ~ 25 mV/m. The velocities range from 150 km/s to >2500 km/s, with scale sizes the order of a kilometer (comparable to the Debye length). Initial observations of solitary waves by the four Cluster satellites are utilized to discuss the scale sizes and time variability of the regions where the solitary waves occur. Preliminary results from the four Cluster satellites have given a glimpse of the spatial and temporal variability of the occurrence of solitary waves and their association with other wave modes. In all the events studied, significant differences were observed in the waveforms observed simultaneously at the four locations separated by ~ 1000 km. When solitary waves were seen at one satellite, they were usually also seen at the other satellites within an interval of a few seconds. In association with an energetic electron injection and a highly compressed magnetosphere, Cluster has observed the largest amplitude solitary waves (>750 mV/m) ever reported in the outer magnetosphere
Challenges in managing real-time data in health information system (HIS)
© Springer International Publishing Switzerland 2016. In this paper, we have discussed the challenges in handling real-time medical big data collection and storage in health information system (HIS). Based on challenges, we have proposed a model for realtime analysis of medical big data. We exemplify the approach through Spark Streaming and Apache Kafka using the processing of health big data Stream. Apache Kafka works very well in transporting data among different systems such as relational databases, Apache Hadoop and nonrelational databases. However, Apache Kafka lacks analyzing the stream, Spark Streaming framework has the capability to perform some operations on the stream. We have identified the challenges in current realtime systems and proposed our solution to cope with the medical big data streams
- …