3,955 research outputs found
Bulk and wetting phenomena in a colloidal mixture of hard spheres and platelets
Density functional theory is used to study binary colloidal fluids consisting
of hard spheres and thin platelets in their bulk and near a planar hard wall.
This system exhibits liquid-liquid coexistence of a phase that is rich in
spheres (poor in platelets) and a phase that is poor in spheres (rich in
platelets). For the mixture near a planar hard wall, we find that the phase
rich in spheres wets the wall completely upon approaching the liquid demixing
binodal from the sphere-poor phase, provided the concentration of the platelets
is smaller than a threshold value which marks a first-order wetting transition
at coexistence. No layering transitions are found in contrast to recent studies
on binary mixtures of spheres and non-adsorbing polymers or thin hard rods.Comment: 6 pages, 4 figure
Polydispersity Effects in Colloid-Polymer Mixtures
We study phase separation and transient gelation in a mixture consisting of
polydisperse colloids and non-adsorbing polymers, where the ratio of the
average size of the polymer to that of the colloid is approximately 0.063.
Unlike what has been reported previously for mixtures with somewhat lower
colloid polydispersity, the addition of polymers does not expand the
fluid-solid coexistence region. Instead, we find a region of fluid-solid
coexistence which has an approximately constant width but an unexpected
re-entrant shape. We detect the presence of a metastable gas-liquid binodal,
which gives rise to two-stepped crystallization kinetics that can be
rationalized as the effect of fractionation. Finally, we find that the
separation into multiple coexisting solid phases at high colloid volume
fractions predicted by equilibrium statistical mechanics is kinetically
suppressed before the system reaches dynamical arrest.Comment: 11 pages, 5 figure
Chemotactic predator-prey dynamics
A discrete chemotactic predator-prey model is proposed in which the prey
secrets a diffusing chemical which is sensed by the predator and vice versa.
Two dynamical states corresponding to catching and escaping are identified and
it is shown that steady hunting is unstable. For the escape process, the
predator-prey distance is diffusive for short times but exhibits a transient
subdiffusive behavior which scales as a power law with time and
ultimately crosses over to diffusion again. This allows to classify the
motility and dynamics of various predatory bacteria and phagocytes. In
particular, there is a distinct region in the parameter space where they prove
to be infallible predators.Comment: 4 pages, 4 figure
Role of Metastable States in Phase Ordering Dynamics
We show that the rate of separation of two phases of different densities
(e.g. gas and solid) can be radically altered by the presence of a metastable
intermediate phase (e.g. liquid). Within a Cahn-Hilliard theory we study the
growth in one dimension of a solid droplet from a supersaturated gas. A moving
interface between solid and gas phases (say) can, for sufficient (transient)
supersaturation, unbind into two interfaces separated by a slab of metastable
liquid phase. We investigate the criteria for unbinding, and show that it may
strongly impede the growth of the solid phase.Comment: 4 pages, Latex, Revtex, epsf. Updated two reference
Diffusive Evolution of Stable and Metastable Phases II: Theory of Non-Equilibrium Behaviour in Colloid-Polymer Mixtures
By analytically solving some simple models of phase-ordering kinetics, we
suggest a mechanism for the onset of non-equilibrium behaviour in
colloid-polymer mixtures. These mixtures can function as models of atomic
systems; their physics therefore impinges on many areas of thermodynamics and
phase-ordering. An exact solution is found for the motion of a single, planar
interface separating a growing phase of uniform high density from a
supersaturated low density phase, whose diffusive depletion drives the
interfacial motion. In addition, an approximate solution is found for the
one-dimensional evolution of two interfaces, separated by a slab of a
metastable phase at intermediate density. The theory predicts a critical
supersaturation of the low-density phase, above which the two interfaces become
unbound and the metastable phase grows ad infinitum. The growth of the stable
phase is suppressed in this regime.Comment: 27 pages, Latex, eps
Polarization and frequency disentanglement of photons via stochastic polarization mode dispersion
We investigate the quantum decoherence of frequency and polarization
variables of photons via polarization mode dispersion in optical fibers. By
observing the analogy between the propagation equation of the field and the
Schr\"odinger equation, we develop a master equation under Markovian
approximation and analytically solve for the field density matrix. We identify
distinct decay behaviors for the polarization and frequency variables for
single-photon and two-photon states. For the single photon case, purity
functions indicate that complete decoherence for each variable is possible only
for infinite fiber length. For entangled two-photon states passing through
separate fibers, entanglement associated with each variable can be completely
destroyed after characteristic finite propagation distances. In particular, we
show that frequency disentanglement is independent of the initial polarization
status. For propagation of two photons in a common fiber, the evolution of a
polarization singlet state is addressed. We show that while complete
polarization disentanglement occurs at a finite propagation distance, frequency
entanglement could survive at any finite distance for gaussian states.Comment: 2 figure
Colloidal gelation and non-ergodicity transitions
Within the framework of the mode coupling theory (MCT) of structural
relaxation, mechanisms and properties of non-ergodicity transitions in rather
dilute suspensions of colloidal particles characterized by strong short-ranged
attractions are studied. Results building on the virial expansion for particles
with hard cores and interacting via an attractive square well potential are
presented, and their relevance to colloidal gelation is discussed.Comment: 10 pages, 4 figures; Talk at the Conference: "Unifying Concepts in
Glass Physics" ICTP Trieste, September 1999; to be published in J. Phys.:
Condens. Matte
Crystallization of hard-sphere glasses
We study by molecular dynamics the interplay between arrest and
crystallization in hard spheres. For state points in the plane of volume
fraction () and polydispersity (), we delineate states that spontaneously crystallize from those that do
not. For noncrystallizing (or precrystallization) samples we find
isodiffusivity lines consistent with an ideal glass transition at , independent of . Despite this, for , crystallization
occurs at . This happens on time scales for which the system is
aging, and a diffusive regime in the mean square displacement is not reached;
by those criteria, the system is a glass. Hence, contrary to a widespread
assumption in the colloid literature, the occurrence of spontaneous
crystallization within a bulk amorphous state does not prove that this state
was an ergodic fluid rather than a glass.Comment: 4 pages, 3 figure
- …