1,097 research outputs found
Health monitoring of federated future internet experimentation facilities
The federation of Future Internet testbeds as envisaged by the Fed4FIRE project is a complex undertaking. It combines a large number of existing, independent testbeds in a single federation, and presents them to the experimenter as if it were a single infrastructure. Operating and using such an infrastructure requires a profound knowledge of the status of the health of the underlying independent systems. Inspired by network monitoring techniques used to operate the Internet today, this paper considers how a centralized health monitoring system can be set up in a federated environment of Future Internet Experimentation Facilities. We show why it is a vital tool for experimenters and First Level Support in the federation, which health monitoring information must be captured, and how this information can be displayed most appropriately
Subsystem constraints in variational second order density matrix optimization: curing the dissociative behavior
A previous study of diatomic molecules revealed that variational second-order
density matrix theory has serious problems in the dissociation limit when the
N-representability is imposed at the level of the usual two-index (P, Q, G) or
even three-index (T1, T2) conditions [H. van Aggelen et al., Phys. Chem. Chem.
Phys. 11, 5558 (2009)]. Heteronuclear molecules tend to dissociate into
fractionally charged atoms. In this paper we introduce a general class of
N-representability conditions, called subsystem constraints, and show that they
cure the dissociation problem at little additional computational cost. As a
numerical example the singlet potential energy surface of BeB+ is studied. The
extension to polyatomic molecules, where more subsystem choices can be
identified, is also discussed.Comment: published version;added reference
Variational determination of the second-order density matrix for the isoelectronic series of beryllium, neon and silicon
The isoelectronic series of Be, Ne and Si are investigated using a
variational determination of the second-order density matrix. A semidefinite
program was developed that exploits all rotational and spin symmetries in the
atomic system. We find that the method is capable of describing the strong
static electron correlations due to the incipient degeneracy in the hydrogenic
spectrum for increasing central charge. Apart from the ground-state energy
various other properties are extracted from the variationally determined
second-order density matrix. The ionization energy is constructed using the
extended Koopmans' theorem. The natural occupations are also studied, as well
as the correlated Hartree-Fock-like single particle energies. The exploitation
of symmetry allows to study the basis set dependence and results are presented
for correlation-consistent polarized valence double, triple and quadruple zeta
basis sets.Comment: 19 pages, 7 figures, 3 tables v2: corrected typo in Eq. (52
Model for the low-temperature magnetic phases observed in doped YBa_2Cu_3O_{6+x}
A classical statistical model for the antiferromagnetic (AFM) ordering of the
Cu-spins in the CuO_2 planes of reduced YBa_2Cu_3O_{6+x} type materials is
presented. The magnetic phases considered are the experimentally observed
high-temperature AFI phase with ordering vector Q_I=(1/2,1/2,0), and the
low-temperature phases: AFII with Q_II=(1/2,1/2,1/2) and intermediate TA (Turn
Angle) phases TAI, TAII and TAIII with components of both ordering vectors. It
is shown that the AFII and TA phases result from an effective ferromagnetic
(FM) type coupling mediated by free spins in the CuO_x basal plane. Good
agreement with experimental data is obtained for realistic model parameters.Comment: 11 pages, 2 Postscript figures, Submitted to Phys.Rev.Let
Parameterizing Gravity Waves and Understanding Their Impacts on Venus' Upper Atmosphere
The complexity of Venus upper atmospheric circulation is still being investigated. Simulations of Venus upper atmosphere largely depend on the utility of Rayleigh Friction (RF) as a driver and necessary process to reproduce observations (i.e. temperature, density, nightglow emission). Currently, there are additional observations which provide more constraints to help characterize the driver(s) of the circulation. This work will largely focus on the impact parameterized gravity waves have on Venus upper atmosphere circulation within a three dimensional hydrodynamic model (Venus Thermospheric General Circulation Model)
The Latest on the Venus Thermospheric General Circulation Model: Capabilities and Simulations
Venus has a complex and dynamic upper atmosphere. This has been observed many times by ground-based, orbiters, probes, and fly-by missions going to other planets. Two over-arching questions are generally asked when examining the Venus upper atmosphere: (1) what creates the complex structure in the atmosphere, and (2) what drives the varying dynamics. A great way to interpret and connect observations to address these questions utilizes numerical modeling; and in the case of the middle and upper atmosphere (above the cloud tops), a 3D hydrodynamic numerical model called the Venus Thermospheric General Circulation Model (VTGCM) can be used. The VTGCM can produce climatological averages of key features in comparison to observations (i.e. nightside temperature, O2 IR nightglow emission). More recently, the VTGCM has been expanded to include new chemical constituents and airglow emissions, as well as new parameterizations to address waves and their impact on the varying global circulation and corresponding airglow distributions
- …