904 research outputs found

    Crucial roles of Pox neuro in the developing ellipsoid body and antennal lobes of the Drosophila brain.

    Get PDF
    The paired box gene Pox neuro (Poxn) is expressed in two bilaterally symmetric neuronal clusters of the developing adult Drosophila brain, a protocerebral dorsal cluster (DC) and a deutocerebral ventral cluster (VC). We show that all cells that express Poxn in the developing brain are postmitotic neurons. During embryogenesis, the DC and VC consist of only 20 and 12 neurons that express Poxn, designated embryonic Poxn-neurons. The number of Poxn-neurons increases only during the third larval instar, when the DC and VC increase dramatically to about 242 and 109 Poxn-neurons, respectively, virtually all of which survive to the adult stage, while no new Poxn-neurons are added during metamorphosis. Although the vast majority of Poxn-neurons express Poxn only during third instar, about half of them are born by the end of embryogenesis, as demonstrated by the absence of BrdU incorporation during larval stages. At late third instar, embryonic Poxn-neurons, which begin to express Poxn during embryogenesis, can be easily distinguished from embryonic-born and larval-born Poxn-neurons, which begin to express Poxn only during third instar, (i) by the absence of Pros, (ii) their overt differentiation of axons and neurites, and (iii) the strikingly larger diameter of their cell bodies still apparent in the adult brain. The embryonic Poxn-neurons are primary neurons that lay out the pioneering tracts for the secondary Poxn-neurons, which differentiate projections and axons that follow those of the primary neurons during metamorphosis. The DC and the VC participate only in two neuropils of the adult brain. The DC forms most, if not all, of the neurons that connect the bulb (lateral triangle) with the ellipsoid body, a prominent neuropil of the central complex, while the VC forms most of the ventral projection neurons of the antennal lobe, which connect it ipsilaterally to the lateral horn, bypassing the mushroom bodies. In addition, Poxn-neurons of the VC are ventral local interneurons of the antennal lobe. In the absence of Poxn protein in the developing brain, embryonic Poxn-neurons stall their projections and cannot find their proper target neuropils, the bulb and ellipsoid body in the case of the DC, or the antennal lobe and lateral horn in the case of the VC, whereby the absence of the ellipsoid body neuropil is particularly striking. Poxn is thus crucial for pathfinding both in the DC and VC. Additional implications of our results are discussed

    Phase transition kinetics in austempered ductile iron (ADI) with regard to MO content

    Get PDF
    The phase transformation to ausferrite during austempered ductile iron (ADI) heat treatment can be significantly influenced by the alloying element Mo. Utilizing neutron diffraction, the phase transformation from austenite to ausferrite was monitored in-situ during the heat treatment. In addition to the phase volume fractions, the carbon enrichment of retained austenite was investigated. The results from neutron diffraction were compared to the macroscopic length change from dilatometer measurements. They show that the dilatometer data are only of limited use for the investigation of ausferrite formation. However, they allow deriving the time of maximum carbon accumulation in the retained austenite. In addition, the transformation of austenite during ausferritization was investigated using metallographic methods. Finally, the distribution of the alloying elements in the vicinity of the austenite/ferrite interface zone was shown by atom probe tomography (APT) measurements. C and Mn were enriched within the interface, while Si concentration was reduced. The Mo concentration in ferrite, interface and austentite stayed at the same level. The delay of austenite decay during Stage II reaction caused by Mo was studied in detail at 400 °C for the initial material as well as for 0.25 mass % and 0.50 mass % Mo additions

    Beyond Halo and Wedge: Visualizing out-of-view objects on head-mounted virtual and augmented reality devices

    Get PDF
    Head-mounted devices (HMDs) for Virtual and Augmented Reality (VR/AR) enable us to alter our visual perception of the world. However, current devices suffer from a limited field of view (FOV), which becomes problematic when users need to locate out of view objects (e.g., locating points-of-interest during sightseeing). To address this, we developed and evaluated in two studies HaloVR, WedgeVR, HaloAR and WedgeAR, which are inspired by usable 2D off-screen object visualization techniques (Halo, Wedge). While our techniques resulted in overall high usability, we found the choice of AR or VR impacts mean search time (VR: 2.25s, AR: 3.92s) and mean direction estimation error (VR: 21.85°, AR: 32.91°). Moreover, while adding more out-of-view objects significantly affects search time across VR and AR, direction estimation performance remains unaffected. We provide implications and discuss the challenges of designing for VR and AR HMDs

    RadialLight: Exploring radial peripheral LEDs for directional cues in head-mounted displays

    Get PDF
    Current head-mounted displays (HMDs) for Virtual Reality (VR) and Augmented Reality (AR) have a limited field-of-view (FOV). This limited FOV further decreases the already restricted human visual range and amplifies the problem of objects going out of view. Therefore, we explore the utility of augmenting HMDs with RadialLight, a peripheral light display implemented as 18 radially positioned LEDs around each eye to cue direction towards out-of-view objects. We first investigated direction estimation accuracy of multi-colored cues presented on one versus two eyes. We then evaluated direction estimation accuracy and search time performance for locating out-of-view objects in two representative 360° video VR scenarios. Key findings show that participants could not distinguish between LED cues presented to one or both eyes simultaneously, participants estimated LED cue direction within a maximum 11.8° average deviation, and out-of-view objects in less distracting scenarios were selected faster. Furthermore, we provide implications for building peripheral HMDs

    Effects of Age of Onset of Tonic-Clonic Seizures on Neuropsychological Performance in Children

    Full text link
    Forty-eight children (aged 9 to 15 years) with tonic-clonic seizures were administered a neuropsychological test battery. The children with seizures of early onset (before age 5) were significantly impaired relative to the children with later onset on 8 of the 14 measures in the battery. The deficits were seen on tasks whose requirements included the repetition of a simple motor act, attention and concentration, memory, and complex problem solving. These findings emphasize the need for further research to determine the causal factors of the greater dysfunction seen in the early onset group. RÉSUMÉ Quarante huit enfants ÁgÉs de 9 À 15 ans souffrant de crises Épileptiques tonico-cloniques ont ÉtÉÉtudiÉs avec une batterie de tests neuropsychologiques. Pour huit des quatorze mesures de cette batterie de tests les enfants dont les cirses avaient dÉbutÉ prÉcocÉment (avant cinq ans) se sont avÉrÉs Étre signiflcativement dÉtÉriorÉs par rapport À ceux dont les crises avaient dÉbutÉ plus tardivement. Les dÉficits se sont manifestÉs pour des tÁches nÉcessitant la rÉpÉtition d'un acte moteur simple, attention et concentration, mÉmoire et capacitÉÀ rÉsoudre des problÈmes complexes. Ces rÉsultats mettent l'accent sur la nÉcessitÉ de poursuivre les recherches afin de dÉterminer les facteurs responsables de la plus grande dysfonction observÉe chez les enfants dont l'Épilepsie a dÉbutÉ tÔt dans la vie. RESUMEN Se ha aplicado una bateria de tests neuro-psicolÓgicos a 48 niÑos de 9 a 15 aÑos de edad que padecÍan ataques tonico-clÓnicos. Los niÑos con ataques de comienzo precoz (antes de los 5 aÑos) mostraron incapacidades significativas compareÁndolos con niÑos con comienzos mÁs tardios en 8 de los 14 tests de la bateria. Los defectos fueron detectados en las pruebas cuyos requisitos incluÍan la repeticiÓn de un acto motor simple, atenciÓn y concentraciÓn, memoria y resoluciÓn de problemas complejos. Estos hallazgos indican la necesidad de continuar la inves-tigaciÓn para determinar los factores causales de la mayor disfunciÓn observada en el grupo de comienzo precoz. ZUSAMMENFASSUNG 48 Kinder (9 bis 15 Jahre alt) mit tonisch-klonischen KrÄmpfen wurden mit einer neuropsychologischen Testbatterie untersucht. Die Kinder mit einem FrÜhbeginn der AnfÄlle (vor dem Alter von 5 Jahren) zeigten sich bei 8 von 14 Tests der Serie deutlich beeintrÄchtigt im VerhÄltnis zu Kindern mit spÄterem Anfallsbeginn. Die Defekte traten bei Aufgaben auf, die folgende AnsprÜche stellten: Wiederholung einer einfachen motorischen Handlung, Aufmerksamkeit und Konzentration, GedÄchtnis und komplexes ProblemlÖsen. Diese Befunde deuten auf die Notwendigkeit weiterer Untersuchungen, um die ursÄchlichen Faktoren der grÖßeren Funktionseinbuße zu bestimmen, die bei Patienten mit frÜhem Anfallsbeginn beobachtet wird.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/65238/1/j.1528-1157.1981.tb04102.x.pd

    Spectral Subtraction of Robot Motion Noise for Improved Event Detection in Tactile Acceleration Signals

    Get PDF
    New robots for teleoperation and autonomous manipulation are increasingly being equipped with high-bandwidth accelerometers for measuring the transient vibrational cues that occur during con- tact with objects. Unfortunately, the robot\u27s own internal mechanisms often generate significant high-frequency accelerations, which we term ego-vibrations. This paper presents an approach to characterizing and removing these signals from acceleration measurements. We adapt the audio processing technique of spectral subtraction over short time windows to remove the noise that is estimated to occur at the robot\u27s present joint velocities. Implementation for the wrist roll and gripper joints on a Willow Garage PR2 robot demonstrates that spectral subtraction significantly increases signal-to-noise ratio, which should improve vibrotactile event detection in both teleoperation and autonomous robotics
    • 

    corecore