229 research outputs found

    Newton's method and Baker domains

    Full text link
    We show that there exists an entire function f without zeros for which the associated Newton function N(z)=z-f(z)/f'(z) is a transcendental meromorphic functions without Baker domains. We also show that there exists an entire function f with exactly one zero for which the complement of the immediate attracting basin has at least two components and contains no invariant Baker domains of N. The second result answers a question of J. Rueckert and D. Schleicher while the first one gives a partial answer to a question of X. Buff.Comment: 6 page

    Hyperbolic entire functions and the Eremenko–Lyubich class: Class B or not class B?

    Get PDF
    Hyperbolicity plays an important role in the study of dynamical systems, and is a key concept in the iteration of rational functions of one complex variable. Hyperbolic systems have also been considered in the study of transcendental entire functions. There does not appear to be an agreed definition of the concept in this context, due to complications arising from the non-compactness of the phase space. In this article, we consider a natural definition of hyperbolicity that requires expanding properties on the preimage of a punctured neighbourhood of the isolated singularity. We show that this definition is equivalent to another commonly used one: a transcendental entire function is hyperbolic if and only if its postsingular set is a compact subset of the Fatou set. This leads us to propose that this notion should be used as the general definition of hyperbolicity in the context of entire functions, and, in particular, that speaking about hyperbolicity makes sense only within the Eremenko–Lyubich classB of transcendental entire functions with a bounded set of singular values. We also considerably strengthen a recent characterisation of the class B, by showing that functions outside of this class cannot be expanding with respect to a metric whose density decays at most polynomially. In particular, this implies that no transcendental entire function can be expanding with respect to the spherical metric. Finally we give a characterisation of an analogous class of functions analytic in a hyperbolic domain

    Escape rate and Hausdorff measure for entire functions

    Full text link
    The escaping set of an entire function is the set of points that tend to infinity under iteration. We consider subsets of the escaping set defined in terms of escape rates and obtain upper and lower bounds for the Hausdorff measure of these sets with respect to certain gauge functions.Comment: 24 pages; some errors corrected, proof of Theorem 2 shortene

    Entire functions with Julia sets of positive measure

    Full text link
    Let f be a transcendental entire function for which the set of critical and asymptotic values is bounded. The Denjoy-Carleman-Ahlfors theorem implies that if the set of all z for which |f(z)|>R has N components for some R>0, then the order of f is at least N/2. More precisely, we have log log M(r,f) > (N/2) log r - O(1), where M(r,f) denotes the maximum modulus of f. We show that if f does not grow much faster than this, then the escaping set and the Julia set of f have positive Lebesgue measure. However, as soon as the order of f exceeds N/2, this need not be true. The proof requires a sharpened form of an estimate of Tsuji related to the Denjoy-Carleman-Ahlfors theorem.Comment: 17 page

    Slow escaping points of quasiregular mappings

    Get PDF
    This article concerns the iteration of quasiregular mappings on Rd and entire functions on C. It is shown that there are always points at which the iterates of a quasiregular map tend to infinity at a controlled rate. Moreover, an asymptotic rate of escape result is proved that is new even for transcendental entire functions. Let f:Rd→Rd be quasiregular of transcendental type. Using novel methods of proof, we generalise results of Rippon and Stallard in complex dynamics to show that the Julia set of f contains points at which the iterates fn tend to infinity arbitrarily slowly. We also prove that, for any large R, there is a point x with modulus approximately R such that the growth of |fn(x)| is asymptotic to the iterated maximum modulus Mn(R,f)

    Normal families and fixed points of iterates

    Full text link
    Let F be a family of holomorphic functions and let K be a constant less than 4. Suppose that for all f in F the second iterate of f does not have fixed points for which the modulus of the multiplier is greater than K. We show that then F is normal. This is deduced from a result about the multipliers of iterated polynomials.Comment: 5 page

    Some examples of Baker domains

    Full text link
    We construct entire functions with hyperbolic and simply parabolic Baker domains on which the functions are not univalent. The Riemann maps from the unit disk to these Baker domains extend continuously to certain arcs on the unit circle. The results answer questions posed by Fagella and Henriksen, Baker and Dominguez, and others.Comment: 13 page

    On the number of solutions of a transcendental equation arising in the theory of gravitational lensing

    Full text link
    The equation in the title describes the number of bright images of a point source under lensing by an elliptic object with isothermal density. We prove that this equation has at most 6 solutions. Any number of solutions from 1 to 6 can actually occur.Comment: 26 pages, 12 figure

    Boundaries of univalent Baker domains

    Get PDF
    Let ff be a transcendental entire function and let UU be a univalent Baker domain of ff. We prove a new result about the boundary behaviour of conformal maps and use this to show that the non-escaping boundary points of UU form a set of harmonic measure zero with respect to UU. This leads to a new sufficient condition for the escaping set of ff to be connected, and also a new general result on Eremenko's conjecture
    corecore