661 research outputs found

    PEE9: THE SOCIETAL COST OF ATOPIC DERMATITIS IN GERMANY

    Get PDF

    Definition of Soybean Genomic Regions That Control Seed Phytoestrogen Amounts

    Get PDF
    Soybean seeds contain large amounts of isoflavones or phytoestrogens such as genistein, daidzein, and glycitein that display biological effects when ingested by humans and animals. In seeds, the total amount, and amount of each type, of isoflavone varies by 5 fold between cultivars and locations. Isoflavone content and quality are one key to the biological effects of soy foods, dietary supplements, and nutraceuticals. Previously we had identified 6 loci (QTL) controlling isoflavone content using 150 DNA markers. This study aimed to identify and delimit loci underlying heritable variation in isoflavone content with additional DNA markers. We used a recombinant inbred line (RIL) population ([Formula: see text]) derived from the cross of “Essex” by “Forrest,” two cultivars that contrast for isoflavone content. Seed isoflavone content of each RIL was determined by HPLC and compared against 240 polymorphic microsatellite markers by one-way analysis of variance. Two QTL that underlie seed isoflavone content were newly discovered. The additional markers confirmed and refined the positions of the six QTL already reported. The first new region anchored by the marker BARC_Satt063 was significantly associated with genistein ([Formula: see text] , [Formula: see text]) and daidzein ([Formula: see text] , [Formula: see text]). The region is located on linkage group B2 and derived the beneficial allele from Essex. The second new region defined by the marker BARC_Satt129 was significantly associated with total glycitein ([Formula: see text] , [Formula: see text]). The region is located on linkage group D1a+Q and also derived the beneficial allele from Essex. Jointly the eight loci can explain the heritable variation in isoflavone content. The loci may be used to stabilize seed isoflavone content by selection and to isolate the underlying genes

    Genomic regions that underlie soybean seed isoflavone content

    Get PDF
    Soy products contain isoflavones (genistein, daidzein, and glycitein)that display biological effects when ingested by humans and animals, these effects are species, dose and age dependent. Therefore, the content and quality of isoflavones in soybeans is a key to their biological effect. Our objective was to identify loci that underlie isoflavone content in soybean seeds. The study involved 100 recombinant inbred lines (RIL)fr om the cross of ‘Essex’ by ‘Forrest,’ two cultivars that contrast for isoflavone content. Isoflavone content of seeds fromeach RIL was determined by high performance liquid chromatography (HPLC). The distribution of isoflavone content was continuous and unimodal. The heritability estimates on a line mean basis were 79% for daidzein, 22% for genistein, and 88% for glycitein. Isoflavone content of soybean seeds was compared against 150 polymorphic DNA markers in a one-way analysis of variance. Four genomic regions were found to be significantly associated with the isoflavone content of soybean seeds across both locations and years. Molecular linkage group B1 contained a major QTL underlying glycitein content (P = 0.0001,R2 = 50.2%), linkage group N contained a QTL for glycitein (P = 0.0033,R2 = 11.1%)and a QTL for daidzein (P = 0.0023,R2 = 10.3%) and linkage group A1 contained a QTL for daidzein (P = 0.0081,R2 = 9.6%). Selection for these chromosomal regions in a marker assisted selection program will allow for the manipulation of amounts and profiles of isoflavones (genistein, daidzein, and glycitein)c ontent of soybean seeds. In addition, tightly linked markers can be used in map based cloning of genes associated with isoflavone content

    The Expression and Localization of N-Myc Downstream-Regulated Gene 1 in Human Trophoblasts

    Get PDF
    The protein N-Myc downstream-regulated gene 1 (NDRG1) is implicated in the regulation of cell proliferation, differentiation, and cellular stress response. NDRG1 is expressed in primary human trophoblasts, where it promotes cell viability and resistance to hypoxic injury. The mechanism of action of NDRG1 remains unknown. To gain further insight into the intracellular action of NDRG1, we analyzed the expression pattern and cellular localization of endogenous NDRG1 and transfected Myc-tagged NDRG1 in human trophoblasts exposed to diverse injuries. In standard conditions, NDRG1 was diffusely expressed in the cytoplasm at a low level. Hypoxia or the hypoxia mimetic cobalt chloride, but not serum deprivation, ultraviolet (UV) light, or ionizing radiation, induced the expression of NDRG1 in human trophoblasts and the redistribution of NDRG1 into the nucleus and cytoplasmic membranes associated with the endoplasmic reticulum (ER) and microtubules. Mutation of the phosphopantetheine attachment site (PPAS) within NDRG1 abrogated this pattern of redistribution. Our results shed new light on the impact of cell injury on NDRG1 expression patterns, and suggest that the PPAS domain plays a key role in NDRG1's subcellular distribution. © 2013 Shi et al

    Differential Effects of Aerobic Exercise, Resistance Training and Combined Exercise Modalities on Cholesterol and the Lipid Profile:Review, Synthesis and Recommendations

    Get PDF
    There is a direct relationship between chronically elevated cholesterol levels (dyslipidaemia) and coronary heart disease. A reduction in total cholesterol is considered the gold standard in preventative cardiovascular medicine. Exercise has been shown to have positive impacts on the pathogenesis, symptomatology and physical fitness of individuals with dyslipidaemia, and to reduce cholesterol levels. The optimal mode, frequency, intensity and duration of exercise for improvement of cholesterol levels are, however, yet to be identified. This review assesses the evidence from 13 published investigations and two review articles that have addressed the effects of aerobic exercise, resistance training and combined aerobic and resistance training on cholesterol levels and the lipid profile. The data included in this review confirm the beneficial effects of regular activity on cholesterol levels and describe the impacts of differing volumes and intensities of exercise upon different types of cholesterol. Evidence-based exercise recommendations are presented, aimed at facilitating the prescription and delivery of interventions in order to optimize cholesterol levels
    corecore