6,416 research outputs found

    Sobre la secreció d'adrenina reflexa i asfíctica

    Get PDF

    Plans for phase coherent long baseline interferometry for geophysical applications using the Anik-B communications satellite

    Get PDF
    A pilot project to establish an operational phase stable very long baseline interferometer (VLBI) for geophysical studies is described. Methods for implementation as well as practical applications are presented

    The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing

    Get PDF
    We describe the design of a correlator system for ground and space-based VLBI. The correlator contains unique signal processing functions: flexible LO frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate digital signal-processing techniques to allow correlation of signals at different sample rates; and a digital filter for very high resolution cross-power spectra. It also includes autocorrelation, tone extraction, pulsar gating, signal-statistics accumulation.Comment: 44 pages, 13 figure

    Mechanism of CDW-SDW Transition in One Dimension

    Full text link
    The phase transition between charge- and spin-density-wave (CDW, SDW) phases is studied in the one-dimensional extended Hubbard model at half-filling. We discuss whether the transition can be described by the Gaussian and the spin-gap transitions under charge-spin separation, or by a direct CDW-SDW transition. We determine these phase boundaries by level crossings of excitation spectra which are identified according to discrete symmetries of wave functions. We conclude that the Gaussian and the spin-gap transitions take place separately from weak- to intermediate-coupling region. This means that the third phase exists between the CDW and the SDW states. Our results are also consistent with those of the strong-coupling perturbative expansion and of the direct evaluation of order parameters.Comment: 5 pages(REVTeX), 5 figures(EPS), 1 table, also available from http://wwwsoc.nacsis.ac.jp/jps/jpsj/1999/p68a/p68a42/p68a42h/p68a42h.htm

    Stochastic Feedback and the Regulation of Biological Rhythms

    Full text link
    We propose a general approach to the question of how biological rhythms spontaneously self-regulate, based on the concept of ``stochastic feedback''. We illustrate this approach by considering the neuroautonomic regulation of the heart rate. The model generates complex dynamics and successfully accounts for key characteristics of cardiac variability, including the 1/f1/f power spectrum, the functional form and scaling of the distribution of variations, and correlations in the Fourier phases. Our results suggest that in healthy systems the control mechanisms operate to drive the system away from extreme values while not allowing it to settle down to a constant output.Comment: 15 pages, latex2e using rotate and epsf, with 4 ps figures. Submitted to PR

    Lithium in LMC carbon stars

    Full text link
    Nineteen carbon stars that show lithium enrichment in their atmospheres have been discovered among a sample of 674 carbon stars in the Large Magellanic Cloud. Six of the Li-rich carbon stars are of J-type, i.e. with strong 13C isotopic features. No super-Li-rich carbon stars were found. The incidence of lithium enrichment among carbon stars in the LMC is much rarer than in the Galaxy, and about five times more frequent among J-type than among N-type carbon stars. The bolometric magnitudes of the Li-rich carbon stars range between -3.3 and -5.7. Existing models of Li-enrichment via the hot bottom burning process fail to account for all of the observed properties of the Li-enriched stars studied here.Comment: 10 pages, 8 figures, Latex; in press, MNRA

    Possible Calcite and Magnesium Perchlorate Interaction in the Mars Phoenix Thermal and Evolved Gas Analyzer (TEGA)

    Get PDF
    The Mars Phoenix Lander's TEGA instrument detected a calcium carbonate phase decomposing at high temperatures (approx.700 C) from the Wicked Witch soil sample [1]. TEGA also detected a lower temperature CO2 release between 400 C and 680 C [1]. Possible explanations given for this lower temperature CO2 release include thermal decomposition of Mg or Fe carbonates, a zeolitictype desorption reaction, or combustion of organic compounds in the soil [2]. The detection of 0.6 wt % soluble perchlorate by the Wet Chemistry Laboratory (WCL) on Phoenix [3] has implications for the possibility of organic molecules in the soil. Ming et al. [4] demonstrated that perchlorates could have oxidized organic compounds to CO2 in TEGA, preventing detection of their characteristic mass fragments. Here, we propose that a perchlorate salt and calcium carbonate present in martian soil reacted to produce the 400 C - 680 C TEGA CO2 release. The parent salts of the perchlorate on Mars are unknown, but geochemical models using WCL data support the possible dominance of Mg-perchlorate salts [5]. Mg(ClO4)2 6H2O is the stable phase at ambient martian conditions [6], and breaks down at lower temperatures than carbonates giving off Cl2 and HCl gas [7,8]. Devlin and Herley [7] report two exotherms at 410-478 C and 473-533 C which correspond to the decomposition of Mg(ClO4)2
    corecore