301 research outputs found

    Ranging system which compares an object reflected component of a light beam to a reference component of the light beam

    Get PDF
    A system is described for measuring the distance to an object by comparing a first component of a light pulse that is reflected off the object with a second component of the light pulse that passes along a reference path of known length, which provides great accuracy with a relatively simple and rugged design. The reference path can be changed in precise steps so that it has an equivalent length approximately equal to the path length of the light pulse component that is reflected from the object. The resulting small difference in path lengths can be precisely determined by directing the light pulse components into opposite ends of a detector formed of a material that emits a second harmonic light output at the locations where the opposite going pulses past simultaneously across one another

    MicroRNA-101 expression is associated with JAK2V617F activity and regulates JAK2/STAT5 signaling.

    Get PDF
    Philadelphia negative myeloproliferative neopl 28 asms (MPNs) are clonal haematological diseases characterized by excessive production of mature blood cells. Exome sequencing of patient samples have showed a relatively low degree genomic complexity for these diseases1. The majority of MPN patients carry somatic mutations in the JAK2 gene, with the JAK2V617F missense mutation being the most common in poly33 cythemia vera (PV, 95%) and essential thrombocythemia (ET, 60%) 2.FP was supported by Fondazione Umberto Veronesi, and Institute Pasteur - Fondazione Cenci Bolognetti

    "Thundery shower": a novel headache syndrome

    Get PDF
    published_or_final_versio

    Evaluating the GeoSnap 13-Ό\mum Cut-Off HgCdTe Detector for mid-IR ground-based astronomy

    Full text link
    New mid-infrared HgCdTe (MCT) detector arrays developed in collaboration with Teledyne Imaging Sensors (TIS) have paved the way for improved 10-Ό\mum sensors for space- and ground-based observatories. Building on the successful development of longwave HAWAII-2RGs for space missions such as NEO Surveyor, we characterize the first 13-Ό\mum GeoSnap detector manufactured to overcome the challenges of high background rates inherent in ground-based mid-IR astronomy. This test device merges the longwave HgCdTe photosensitive material with Teledyne's 2048x2048 GeoSnap-18 (18-Ό\mum pixel) focal plane module, which is equipped with a capacitive transimpedance amplifier (CTIA) readout circuit paired with an onboard 14-bit analog-to-digital converter (ADC). The final assembly yields a mid-IR detector with high QE, fast readout (>85 Hz), large well depth (>1.2 million electrons), and linear readout. Longwave GeoSnap arrays would ideally be deployed on existing ground-based telescopes as well as the next generation of extremely large telescopes. While employing advanced adaptive optics (AO) along with state-of-the-art diffraction suppression techniques, instruments utilizing these detectors could attain background- and diffraction-limited imaging at inner working angles <10 λ/D\lambda/D, providing improved contrast-limited performance compared to JWST MIRI while operating at comparable wavelengths. We describe the performance characteristics of the 13-Ό\mum GeoSnap array operating between 38-45K, including quantum efficiency, well depth, linearity, gain, dark current, and frequency-dependent (1/f) noise profile.Comment: 17 pages, 17 figures. Accepted for publication in special addition of Astronomische Nachrichten / Astronomical Notes as a contribution to SDW202

    Exclusive enteral nutrition mediates gut microbial and metabolic changes that are associated with remission in children with Crohn’s disease

    Get PDF
    GD and AWW receive core funding support from the Scottish Government’s Rural and Environmental Science and Analytical Services (RESAS) Division. JW was funded by the Wellcome Trust [Grant No. 098051]. JVL is funded by MRC New Investigator Grant (MR/P002536/1) and ERC Starting Grant (715662). JK is funded by NIHR: II-OL-1116-10027, NIH: R01-CA204403-01A1, Horizon H2020: ITN GROWTH. Imperial Biomedical Research Centre, SAGES research grant. Infrastructure support for this research was provided by the NIHR Imperial biomedical Research Centre (BRC). Microbiota analyses were carried out using the Maxwell computer cluster at the University of Aberdeen. We thank the Illumina MiSeq team at the Wellcome Sanger Institute for their assistance. This work was partially described in the Ph.D. thesis of KD (Retrieved 2020, Pediatric inflammatory bowel disease Monitoring, nutrition and surgery, https://pure.uva.nl/ws/files/23176012/Thesis_complete_.pdf).Peer reviewedPublisher PD
    • 

    corecore