18,668 research outputs found

    The time evolution of marginally trapped surfaces

    Full text link
    In previous work we have shown the existence of a dynamical horizon or marginally trapped tube (MOTT) containing a given strictly stable marginally outer trapped surface (MOTS). In this paper we show some results on the global behavior of MOTTs assuming the null energy condition. In particular we show that MOTSs persist in the sense that every Cauchy surface in the future of a given Cauchy surface containing a MOTS also must contain a MOTS. We describe a situation where the evolving outermost MOTS must jump during the coalescence of two seperate MOTSs. We furthermore characterize the behavior of MOTSs in the case that the principal eigenvalue vanishes under a genericity assumption. This leads to a regularity result for the tube of outermost MOTSs under the genericity assumption. This tube is then smooth up to finitely many jump times. Finally we discuss the relation of MOTSs to singularities of a space-time.Comment: 21 pages. This revision corrects some typos and contains more detailed proofs than the original versio

    Maximum observable correlation for a bipartite quantum system

    Get PDF
    The maximum observable correlation between the two components of a bipartite quantum system is a property of the joint density operator, and is achieved by making particular measurements on the respective components. For pure states it corresponds to making measurements diagonal in a corresponding Schmidt basis. More generally, it is shown that the maximum correlation may be characterised in terms of a `correlation basis' for the joint density operator, which defines the corresponding (nondegenerate) optimal measurements. The maximum coincidence rate for spin measurements on two-qubit systems is determined to be (1+s)/2, where s is the spectral norm of the spin correlation matrix, and upper bounds are obtained for n-valued measurements on general bipartite systems. It is shown that the maximum coincidence rate is never greater than the computable cross norm measure of entanglement, and a much tighter upper bound is conjectured. Connections with optimal state discrimination and entanglement bounds are briefly discussed.Comment: Revtex, no figure

    Buoyancy and g-modes in young superfluid neutron stars

    Full text link
    We consider the local dynamics of a realistic neutron star core, including composition gradients, superfluidity and thermal effects. The main focus is on the gravity g-modes, which are supported by composition stratification and thermal gradients. We derive the equations that govern this problem in full detail, paying particular attention to the input that needs to be provided through the equation of state and distinguishing between normal and superfluid regions. The analysis highlights a number of key issues that should be kept in mind whenever equation of state data is compiled from nuclear physics for use in neutron star calculations. We provide explicit results for a particular stellar model and a specific nucleonic equation of state, making use of cooling simulations to show how the local wave spectrum evolves as the star ages. Our results show that the composition gradient is effectively dominated by the muons whenever they are present. When the star cools below the superfluid transition, the support for g-modes at lower densities (where there are no muons) is entirely thermal. We confirm the recent suggestion that the g-modes in this region may be unstable, but our results indicate that this instability will be weak and would only be present for a brief period of the star's life. Our analysis accounts for the presence of thermal excitations encoded in entrainment between the entropy and the superfluid component. Finally, we discuss the complete spectrum, including the normal sound waves and, in superfluid regions, the second sound.Comment: 29 pages, 9 figures, submitted to MNRA

    String Effects on Fermi--Dirac Correlation Measurements

    Get PDF
    We investigate some recent measurements of Fermi--Dirac correlations by the LEP collaborations indicating surprisingly small source radii for the production of baryons in e+ee^+e^--annihilation at the Z0Z^0 peak. In the hadronization models there are besides the Fermi--Dirac correlation effect also a strong dynamical (anti-)correlation. We demonstrate that the extraction of the pure FD effect is highly dependent on a realistic Monte Carlo event generator, both for separation of those dynamical correlations which are not related to Fermi--Dirac statistics, and for corrections of the data and background subtractions. Although the model can be tuned to well reproduce single particle distributions, there are large model-uncertainties when it comes to correlations between identical baryons. We therefore, unfortunately, have to conclude that it is at present not possible to make any firm conclusion about the source radii relevant for baryon production at LEP

    Seismology of adolescent neutron stars: Accounting for thermal effects and crust elasticity

    Full text link
    We study the oscillations of relativistic stars, incorporating key physics associated with internal composition, thermal gradients and crust elasticity. Our aim is to develop a formalism which is able to account for the state-of-the-art understanding of the complex physics associated with these systems. As a first step, we build models using a modern equation of state including composition gradients and density discontinuities associated with internal phase-transitions (like the crust-core transition and the point where muons first appear in the core). In order to understand the nature of the oscillation spectrum, we carry out cooling simulations to provide realistic snapshots of the temperature distribution in the interior as the star evolves through adolescence. The associated thermal pressure is incorporated in the perturbation analysis, and we discuss the presence of gg-modes arising as a result of thermal effects. We also consider interface modes due to phase-transitions and the gradual formation of the star's crust and the emergence of a set of shear modes.Comment: 27 pages, 14 figure

    Implications of an r-mode in XTE J1751-305: Mass, radius and spin evolution

    Full text link
    Recently Strohmayer and Mahmoodifar presented evidence for a coherent oscillation in the X-ray light curve of the accreting millisecond pulsar XTE J1751-305, using data taken by RXTE during the 2002 outburst of this source. They noted that a possible explanation includes the excitation of a non-radial oscillation mode of the neutron star, either in the form of a g-mode or an r-mode. The r-mode interpretation has connections with proposed spin-evolution scenarios for systems such as XTE J1751-305. Here we examine in detail this interesting possible interpretation. Using the ratio of the observed oscillation frequency to the star's spin frequency, we derive an approximate neutron star mass-radius relation which yields reasonable values for the mass over the range of expected stellar radius (as constrained by observations of radius-expansion burst sources). However, we argue that the large mode amplitude suggested by the Strohmayer and Mahmoodifar analysis would inevitably lead to a large spin-down of the star, inconsistent with its observed spin evolution, regardless of whether the r-mode itself is in a stable or unstable regime. We therefore conclude that the r-mode interpretation of the observed oscillation is not consistent with our current understanding of neutron star dynamics and must be considered unlikely. Finally we note that, subject to the availability of a sufficiently accurate timing model, a direct gravitational-wave search may be able to confirm or reject an r-mode interpretation unambiguously, should such an event, with a similar inferred mode amplitude, recur during the Advanced detector era.Comment: 8 pages, 3 figures; submitted to MNRA

    Finding the Kraus decomposition from a master equation and vice versa

    Get PDF
    For any master equation which is local in time, whether Markovian, non-Markovian, of Lindblad form or not, a general procedure is reviewed for constructing the corresponding linear map from the initial state to the state at time t, including its Kraus-type representations. Formally, this is equivalent to solving the master equation. For an N-dimensional Hilbert space it requires (i) solving a first order N^2 x N^2 matrix time evolution (to obtain the completely positive map), and (ii) diagonalising a related N^2 x N^2 matrix (to obtain a Kraus-type representation). Conversely, for a given time-dependent linear map, a necessary and sufficient condition is given for the existence of a corresponding master equation, where the (not necessarily unique) form of this equation is explicitly determined. It is shown that a `best possible' master equation may always be defined, for approximating the evolution in the case that no exact master equation exists. Examples involving qubits are given.Comment: 16 pages, no figures. Appeared in special issue for conference QEP-16, Manchester 4-7 Sep 200
    corecore