
Strathprints Institutional Repository

Hall, Michael J.W. and Andersson, Erika and Brougham, Thomas (2006) Maximum observable
correlation for a bipartite quantum system. Physical Review A, 74 (6). 062308-1. ISSN 1050-2947

Strathprints is designed to allow users to access the research output of the University of Strathclyde.
Copyright c© and Moral Rights for the papers on this site are retained by the individual authors
and/or other copyright owners. You may not engage in further distribution of the material for any
profitmaking activities or any commercial gain. You may freely distribute both the url (http://
strathprints.strath.ac.uk/) and the content of this paper for research or study, educational, or
not-for-profit purposes without prior permission or charge.

Any correspondence concerning this service should be sent to Strathprints administrator:
mailto:strathprints@strath.ac.uk

http://strathprints.strath.ac.uk/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Strathclyde Institutional Repository

https://core.ac.uk/display/9018849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://strathprints.strath.ac.uk/
http://strathprints.strath.ac.uk/
mailto:strathprints@strath.ac.uk
http://strathprints.strath.ac.uk/


 
 
Hall, Michael J.W. and Andersson, Erika* and Brougham, Thomas* (2006) Maximum observable 
correlation for a bipartite quantum system. Physical Review A: Atomic, Molecular and 
Optical Physics, 74 (6). 062308-1-062308-11. ISSN 1050-2947 
 
 
 
 
 
http://eprints.cdlr.strath.ac.uk/6197/
 
This is an author-produced version of a paper published in Physical Review A: Atomic, Molecular 
and Optical Physics, 74 (6). 062308-1-062308-11. ISSN 1050-2947. This version has been 
peer-reviewed, but does not include the final publisher proof corrections, published layout, or 
pagination. 
 
Strathprints is designed to allow users to access the research output of the University 
of Strathclyde. Copyright © and Moral Rights for the papers on this site are retained 
by the individual authors and/or other copyright owners. You may not engage in 
further distribution of the material for any profitmaking activities or any commercial 
gain. You may freely distribute both the url (http://eprints.cdlr.strath.ac.uk) and the 
content of this paper for research or study, educational, or not-for-profit purposes 
without prior permission or charge. You may freely distribute the url 
(http://eprints.cdlr.strath.ac.uk) of the Strathprints website. 
 
Any correspondence concerning this service should be sent to The 
Strathprints Administrator: eprints@cis.strath.ac.uk 
 

http://eprints.cdlr.strath.ac.uk/6197/
https://nemo.strath.ac.uk/exchweb/bin/redir.asp?URL=http://eprints.cdlr.strath.ac.uk


ar
X

iv
:q

ua
nt

-p
h/

06
09

07
6 

v1
   

11
 S

ep
 2

00
6

Maximum observable correlation for a bipartite quantum system

Michael J. W. Hall

Theoretical Physics, IAS, Australian National University, Canberra ACT 0200, Australia

Erika Andersson and Thomas Brougham

Department of Physics, University of Strathclyde,

Glasgow G4 0NG, United Kingdom

Abstract

The maximum observable correlation between the two components of a bipartite quantum system

is a property of the joint density operator, and is achieved by making particular measurements on

the respective components. For pure states it corresponds to making measurements diagonal in

a corresponding Schmidt basis. More generally, it is shown that the maximum correlation may

be characterised in terms of a ‘correlation basis’ for the joint density operator, which defines the

corresponding (nondegenerate) optimal measurements. The maximum coincidence rate for spin

measurements on two-qubit systems is determined to be (1 + s)/2, where s is the spectral norm

of the spin correlation matrix, and upper bounds are obtained for n-valued measurements on

general bipartite systems. It is shown that the maximum coincidence rate is never greater than the

computable cross norm measure of entanglement, and a much tighter upper bound is conjectured.

Connections with optimal state discrimination and entanglement bounds are briefly discussed.

PACS numbers: 03.65.Ta, 03.67.-a
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I. INTRODUCTION

Suppose that two observers, Alice and Bob, have access to the respective components

of a bipartite quantum system. If the observers make measurements of observables A and

B respectively, the correlation between the measurement outcomes will clearly depend on

A and B. It is therefore of interest to ask what choice of A and B will give the maximum

possible correlation. The answer would allow bipartite states to be ranked in terms of their

joint-correlation properties. It is also relevant to the efficient generation of secure keys in

quantum cryptography where, all other things being equal, Alice and Bob should aim to

compare measurement outcomes which are maximally correlated for a given shared state

[1, 2].

It is important to make a distinction here between trivial and non-trivial correlations.

For example, if Alice and Bob each simply measure the unit operator, their results will of

course be perfectly (but trivially) correlated. Hence the answer to the above question is

only of interest if it can be ensured that the measurement outcomes for each component

have some useful degree of randomness. This is critical, for example, if Alice and Bob wish

to generate a secure cryptographic key [2]. As will be shown, a natural approach is to

require that the measured observables are ‘maximally informative’ or ‘nondegenerate’. This

is equivalent to requiring the observables to be described by maximal probability operator

measures (POMs), i.e., A ≡ {|aj〉〈aj |}, B ≡ {|bk〉〈bk|}. It turns out that this requirement is

in fact naturally built into some measures of correlation (eg, the mutual information), while

it must be imposed explicitly for others (eg, the coincidence rate).

For the case of a pure bipartite state, |ψ〉〈ψ|, there is an intuitively obvious answer to

the above question: Alice and Bob should choose A and B such that the kets {|aj〉} and

{|bj〉} correspond to a Schmidt decomposition of |ψ〉, i.e., such that

|ψ〉 =
∑

j

√
pj |aj〉 ⊗ |bj〉. (1)

Thus, each possible measurement outcome A = aj will be perfectly correlated with the

corresponding measurement outcome B = bj . Note for this case that 〈aj|ak〉 = δjk = 〈bj |bk〉.
Hence, the optimal observables are described by orthogonal POMs, and can be equivalently

represented by the Hermitian operators Â =
∑

j aj |aj〉〈aj | and B̂ =
∑

j bj |bj〉〈bj| acting on

the respective Hilbert space components [3, 4].
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More generally, when the bipartite state is described by some density operator ρ, finding

the maximal POMs A ≡ {|aj〉〈aj|}, B ≡ {|bk〉〈bk|} that maximise a given measure of

correlation is quite difficult. Such a pair of maximally-correlated observables will determine

a corresponding basis set, {|aj〉 ⊗ |bk〉}, for the bipartite system. This basis set generalises

the notion of the Schmidt basis for pure states, and may be called a correlation basis for ρ.

Unlike the Schmidt basis, the correlation basis need not always be orthonormal.

Mutual information and coincidence rate, as measures of correlation, are briefly discussed

in Sec. II. Formal equations for the correlation basis are given in Sec. III, for the case of

coincidence rate, and illustrated with examples in Sec. III C, including connections with the

problem of optimal state discrimination. It is conjectured that at least one of the optimal

observables A and B can always be chosen to correspond to an orthogonal POM. In Sec. IV,

the maximum coincidence rate for two-valued measurements on pairs of qubits is explicitly

determined as a simple function of the spectral norm of the 3 × 3 spin correlation matrix.

This result is generalised in Sec. V, where general upper bounds for coincidence rate are

obtained for n-valued measurements, based on a singular value decomposition of the Fano

form of the density matrix [5, 6]. These bounds are related to the computable cross norm

[7], and are generalised in Sec. VI to connect other linear correlation bounds (such as spin

covariance) with entanglement properties.

II. MUTUAL INFORMATION VS COINCIDENCE RATE

To find the optimally correlated observables for a given bipartite system, it is necessary

to first quantify joint correlation in some manner. Now, the statistics of any two observables

A and B, measured on the respective components of the system, can always be described by

corresponding probability operator measures (POMs) {Aj} and {Bk} (i.e., sets of positive

operators which sum to the unit operator [3, 4]), with the joint probability of measurement

outcomes A = aj and B = bk for a bipartite density operator ρ being given by

pjk = tr[ρAj ⊗Bk].

Any measure of correlation will be some function of the probability distribution pjk, and

two well known examples are discussed in the following.
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First, the mutual information is defined by [8]

I(A,B|ρ) :=
∑

jk

pjk log2

pjqk
pjk

, (2)

where pj and qk denote the marginal distributions for A and B respectively. This quantity

vanishes for uncorrelated observables; is invariant under relabellings of measurement out-

comes; and has a simple physical interpretation: if A and B are each measured for a large

number of copies of ρ, then I(A,B|ρ) is the average amount of data gained per measure-

ment outcome of A, about the corresponding sequence of measurement outcomes of B (as

quantified by the number of bits required to represent the data), and vice versa [8].

The convexity of mutual information implies that the maximum mutual information for a

given state ρ (also called the accessible information), can always be achieved via observables

described by maximal POMs [9], i.e., with Aj ≡ |aj〉〈aj|, Bk ≡ |bk〉〈bk|. Thus,

Imax(ρ) := max
A,B

I(A,B|ρ) = max
A,B maximal

I(A,B|ρ). (3)

While it is very difficult to determine the optimal observables A and B in Eq. (3), a useful

upper bound follows from application of the Holevo bound to the ensemble of states induced

on one component of the bipartite system by a measurement on the other component (see

Eqs. (12) of Ref. [10]):

Imax(ρ) ≤ min{S(ρ1), S(ρ2)}. (4)

Here S(·) denotes the von Neumann entropy, and ρ1 and ρ2 are the reduced operators for

the first and second components of the bipartite system. This bound is sufficiently strong to

obtain the maximum mutual information for any mixture ρ =
∑

α λα|ψα〉〈ψα| of pure states

sharing a common Schmidt basis up to trivial phase factors, i.e., with

|ψα〉 =
∑

j

√

p
(α)

j exp[iφ
(α)

j ] |aj〉 ⊗ |bj〉.

In particular, Eq. (4) is saturated by choosing A and B to be the maximal POMs generated

by this Schmidt basis, yielding

Imax(
∑

α

λα|ψα〉〈ψα|) = −
∑

j

Pj log2 Pj , (5)

where Pj :=
∑

α λαp
(α)

j . Note that for a pure state, |ψ〉〈ψ|, the maximally correlated observ-

ables are therefore those corresponding to a Schmidt basis for |ψ〉, justifying the intuitive

answer given in the Introduction.
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Second, the coincidence rate measure of correlation is defined by

C(A,B|ρ) :=
∑

j

pjj. (6)

This quantity is simply the probability of the observers obtaining matched outcomes, and

reaches a maximum of unity only when the outcomes are perfectly correlated (i.e., pjk =

pjδjk). It is also a little more tractable than mutual information, and will therefore be the

focus of this paper. Note that coincidence rate (unlike mutual information) has no clear

meaning for continuously-valued outcomes: the quantity C =
∫

dx pxx is not invariant under

relabellings of the outcomes (eg, for x → λx one has C → C/λ ). Hence, only discretely-

valued POMs will be considered in what follows.

Unlike mutual information, the coincidence rate does not intrinsically distinguish between

trivial and non-trivial correlations. For example, if Alice and Bob each merely measure the

unit operator, they will obtain the maximum possible value of coincidence rate (unity),

but the minimum possible value of mutual information (zero). Hence, as discussed in the

Introduction, it is only of interest to maximise coincidence rate subject to some constraint

that ensures a useful degree of randomness for the individual measurement outcomes. One

reasonable constraint is the requirement that the measured observables are maximal POMs.

This constraint is consistent with Eq. (3) for mutual information; does not allow the observers

to remove potential information about correlations by merging measurement outcomes; and

automatically rules out trivial correlations. The relevant problem of interest is then the

determination of observables A and B which achieve the maximum value

Cmax(ρ) := max
A,B maximal

C(A,B|ρ) = max
A,B maximal

∑

j

〈aj, bj |ρ|aj, bj〉. (7)

In analogy to Eq. (5) for mutual information, one finds

Cmax(
∑

α

λα|ψα〉〈ψα|) =
∑

j

Pj = 1,

for mixtures of states sharing a common Schmidt basis, including all pure states. From

Eq. (7) one also obtains the general convexity property

Cmax (λρ+ (1 − λ)σ) ≤ λCmax(ρ) + (1 − λ)Cmax(σ),

Hence, if two given observables A and B maximise the coincidence rate for some set of states,

SAB, then this set is convex. Eq. (7) further implies that the maximum coincidence rate for

5



any member of SAB is bounded above by the largest eigenvalue of the ‘coincidence operator’

KAB :=
∑

j |aj〉〈aj| ⊗ |bj〉〈bj |, and hence that SAB contains a pure state if and only if this

largest eigenvalue is unity.

Finally, it may be recalled that mutual information and coincidence rate are both not

only useful measures of correlation per se, but may also be used to differentiate ‘classical’

from ‘quantum’ correlations, via corresponding Bell inequalities. For example, if Alice can

measure either of A and A, and Bob can measure either of B and B, and it is assumed that

the statistics of these four observables can be generated by some classical joint probability

distribution, then from Eq. (6.5) of Ref. [11] one has

I(A,B|ρ) + I(A,B|ρ) + I(A,B|ρ) − I(A,B|ρ) ≤ H(A) +H(B),

where H(·) denotes the Shannon entropy, while from Eq. (8) of Ref. [12] one has

C(A,B|ρ) + C(A,B|ρ) + C(A,B|ρ) − C(A,B|ρ) ≤ 2.

Each of these inequalities is violated, for example, by suitable spin measurements on a

singlet state. The use of correlation measures to characterise the minimum degree of entan-

glement present has been recently discussed in Ref. [13]. Connections between correlation

and entanglement bounds are obtained in Secs. V and VI below.

III. MAXIMISING COINCIDENCE RATE

A. Conditions for extrema

The linearity of coincidence rate with respect to A and B makes it straightforward to

characterise the extremal observables, as per the following proposition. The conditions for

such observables to maximise coincidence rate are less straightforward, however, and are left

to the next subsection.

Proposition 1: Necessary and sufficient conditions for maximal POMs A ≡ {|aj〉〈aj|}
and B ≡ {|bj〉〈bj |} to attain an extremal value of coincidence rate, for bipartite state ρ, are

〈ak, bl|ρ|al, bl〉 = 〈ak, bk|ρ|al, bk〉, 〈ak, bl|ρ|ak, bk〉 = 〈al, bl|ρ|al, bk〉 (8)

for all k 6= l. Moreover, these conditions are equivalent to the existence of Hermitian oper-

ators V and W , acting on the first and second components respectively, satisfying

(V − 〈bj |ρ|bj〉) |aj〉 = 0, (W − 〈aj|ρ|aj〉) |bj〉 = 0 (9)
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for all j. The corresponding extremal value of coincidence rate is given by

C(A,B|ρ) = tr1[V ] = tr2[W ]. (10)

Proof. Consider the variational quantity

J :=
∑

j

〈aj, bj |ρ|aj, bj〉 − tr1[V (
∑

j

|aj〉〈aj| − 1̂1 ) ] − tr2[W (
∑

j

|bj〉〈bj| − 1̂2 ) ],

defined for arbitrary sets of kets {|aj〉} and {|bj〉} of the same cardinality, where V and

W are Hermitian operators that act as Lagrange multipliers for enforcing the completeness

constraints
∑

j

|aj〉〈aj | = 1̂1,
∑

j

|bj〉〈bj| = 1̂2. (11)

Clearly, Cmax(ρ) in Eq. (7) corresponds to the global maximum of J under these constraints.

Letting J(ǫ) denote J evaluated under the variations |aj〉 → |aj〉+ ǫ|mj〉, |bj〉 → |bj〉+ ǫ|nj〉,
the extremal points of J correspond to the solutions of J ′(0) = 0, i.e.,

∑

j

tr1 [(|mj〉〈aj| + h.c.)(〈bj|ρ|bj〉 − V )] +
∑

j

tr2 [(|nj〉〈bj | + h.c.)(〈aj|ρ|aj〉 −W )] = 0.

Choosing at most one element of the {|mj〉, |nj〉} to be non-vanishing (and arbitrary) then

yields Eq. (9). Multiplying the latter on the left by 〈ak| and 〈bk| further yields

〈ak, bj |ρ|aj , bj〉 = 〈ak|V |aj〉, 〈aj , bk|ρ|aj, bj〉 = 〈bk|W |bj〉,

and Eq. (8) immediately follows from the requirement that V and W are Hermitian. Mul-

tiplying on the right of Eq. (9) by 〈aj| and 〈bj |, and summing over j, yields

V =
∑

j

〈bj |ρ|bj〉 |aj〉〈aj|, W =
∑

j

〈aj|ρ|aj〉 |bj〉〈bj |. (12)

Taking these as defining relations conversely yields Eq. (9) from Eq. (8). The trace of

Eq. (12) yields Eq. (10).

Proposition 1 has a formal connection to the well known problem of distinguishing be-

tween members of a given statistical ensemble. In particular, let {ρj;λj} denote the ensemble

containing state ρj with probability λj. It is known that necessary and sufficient conditions

for a POM {Πj} to optimally discriminate between members of this ensemble are [3]

(Υ − λjρj)Πj = 0, Υ ≥ λjρj (13)
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for all j, for some Hermitian operator Υ. The first of these conditions is equivalent to

Eq. (9) of Proposition 1, for the ensembles {σj; pj} and {τj ; qj} defined by pjσj := 〈bj |ρ|bj〉
and qjτj := 〈bj |ρ|bj〉. Further, summing this first condition over j yields Υ =

∑

j pjσjΠj,

corresponding to Eq. (12).

However, there is no simple analogue of the second condition in Eq. (13) - in particular,

while the conditions

V ≥ 〈bj |ρ|bj〉, W ≥ 〈aj |ρ|aj〉 (14)

would immediately imply that A optimally discriminates between members of the ensemble

{σj ; pj}, and that B optimally discriminates between members of the ensemble {τj ; qj},
these conditions are not sufficient to ensure a maximum for the coincidence rate, as will be

shown by explicit example in Sec. III C. Indeed, it is not clear that these conditions are even

necessary.

Finally, some general properties of extremal observables are worth nothing. First, for

pure states, the matrix coefficients in Eq. (8) vanish identically for k 6= l, for the case where

observables A and B correspond to the Schmidt basis decomposition in Eq. (1), and hence

these observables are extremal as expected. Second, Eq. (8) implies that if A and B are

extremal for two density operators ρ and ρ′, then they are extremal for any mixture of ρ and

ρ′. Third, if ρ is invariant under some local unitary transformation, i.e., ρ = U1⊗U2ρU
†
1⊗U †

2 ,

then, for a given solution A and B of Eq. (8), there will be a second solution A and B, with

|aj〉 = U †
1 |aj〉 and |bj〉 = U †

2 |bj〉. A similar symmetry holds when ρ is invariant under the

interchange of the two component systems.

B. Maxima and n-valued measurements

The second-order variation of the quantity J(ǫ) appearing in the proof of Proposition

1 immediately yields the condition J ′′(0) ≤ 0 for two extremal observables A and B to

correspond to a local maximum of coincidence rate. This condition is required to hold only

for all kets |mj〉 and |nj〉 satisfying

∑

j

(|mj〉〈aj| + |aj〉〈mj|) = 0 =
∑

j

(|nj〉〈bj | + |bj〉〈nj|) (15)

(corresponding to the completeness constraints in Eq. (11), to first order in ǫ). However,

the set of such kets is not straightforward to characterise explicitly, and is dependent on the
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particular POMs A and B in question, making the condition difficult to verify in practice. In

contrast, an explicit and generic condition for C(A,B|ρ) to be a local maximum is obtained

in Proposition 2 below, based on the Naimark extension theorem. The restricted problem

of maximising coincidence rate over n-valued measurements is also discussed.

Attention will be limited to the case where ρ has finite support. In particular, if H1

and H2 are defined to be the Hilbert spaces spanned by the eigenstates of the reduced

density operators ρ1 := tr2[ρ], ρ2 := tr1[ρ], then it is assumed that these Hilbert spaces are

finite-dimensional, i.e.,

d1 := dim(H1) <∞, d2 := dim(H2) <∞. (16)

Now, consider a maximal POM A ≡ {|aj〉〈aj |} on a d-dimensional Hilbert space H , having

less than or equal to n non-zero elements (hence, from Eq. (11), n ≥ d). The Naimark

extension theorem then implies there is an n-dimensional Hilbert space Hn containing H as

a subspace, and a maximal orthogonal POM X ≡ {|xj〉〈xj |} on Hn (i.e., with 〈xj|xk〉 = δjk),

such that |aj〉 = E|xj〉, where E denotes the d-dimensional projection operator from Hn to

H [4, 14]. The converse result trivially holds: any maximal orthogonal POM on Hn, with

‘eigenstates’ {|xj〉}, generates a maximal POM A on H with at most n non-zero elements,

defined via |aj〉 := E|xj〉. Since all d-dimensional subspaces of Hn are unitarily equivalent,

this establishes the following Lemma:

Lemma (Naimark extension theorem for maximal POMs): For a d-dimensional Hilbert

space, H, the set of maximal POMs on H having at most n ≥ d non-zero elements is

characterised by the set of maximal orthogonal POMs on any n-dimensional Hilbert space

Hn that contains H as a subspace.

It follows immediately, taking the limit n → ∞, that the class of all maximal POMs

on H can be represented by the class of maximal orthogonal POMs on H∞. Thus, the

joint measurement of any two maximal POMs A and B, on the respective components of

the tensor product H1 ⊗ H2 spanned by ρ, can be represented by the measurement of two

maximal orthogonal POMs X and Y on the respective components of the tensor product

H∞ ⊗H∞, with

|aj〉 = E|xj〉, |bk〉 = F |yk〉, (E ⊗ F )ρ = ρ = ρ(E ⊗ F ), (17)

where E and F denote the d1 and d2-dimensional projections onto H1 and H2 respectively.
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In particular, one has

C(A,B|ρ) ≡ C(X, Y |ρ) :=
∞
∑

j=1

〈xj , yj|ρ|xj, yj〉. (18)

The advantage of this representation is that maximal orthogonal POMs onH∞ are connected

by unitary transformations. This allows one to explicitly write down the necessary and

sufficient conditions for an extremal value of coincidence rate to be a local maximum, as per

the following proposition.

Proposition 2: Two maximal orthogonal POMs X and Y on H∞, and hence the cor-

responding maximal POMs A and B defined via Eq. (17), generate a local maximum of

coincidence rate if and only if

〈xk, yl|ρ|xl, yl〉 = 〈xk, yk|ρ|xl, yk〉, 〈xk, yl|ρ|xk, yk〉 = 〈xl, yl|ρ|xl, yk〉 (19)

for all k 6= l, and

∑

j

{〈xj |M(V − 〈bj |ρ|bj〉)M |xj〉 + 〈yj|N(W − 〈aj |ρ|aj〉)N |yj〉 + tr (ρ [M, |xj〉〈xj|] ⊗ [N, |yj〉〈yj|])} ≥ 0,

(20)

for all Hermitian operators M and N on H∞, where V and W are defined as per Eq. (12).

The proof is given in the Appendix. Note that the first condition is equivalent to Eq. (8)

of Proposition 1 (and hence to Eq. (9) also), as an immediate consequence of Eq. (17).

Further, the second condition is equivalent to the condition J ′′(0) ≤ 0 discussed above, if

one defines |mj〉 := iEM |xj〉 and |nj〉 := iFN |yj〉 (the constraints in Eq. (15) follow from

the anti-Hermiticity of the operators iEME and iFNF ). Note that the presence of the last

term in Eq. (20) implies that the conditions in Eq. (14) are not sufficient to ensure a local

maximum. Examples will be given in Sec. III C below.

Proposition 2 applies to observables having an arbitrary number of possible outcomes.

However, it is also of interest to consider the case where A and B are restricted to have

a maximum of n possible outcomes, i.e., where the corresponding POMs have at most n

non-zero elements. The completeness constraints in Eq. (11) imply that n ≥ d1, d2. The

maximum of the coincidence rate over such observables, for a given density operator ρ, will

be denoted by C(n)
max(ρ). Noting the above Lemma, one has

C(n)
max(ρ) = max

Xn,Yn

C(Xn, Yn|ρ) = max
Xn,Yn

n
∑

j,k=1

〈xj , yj|ρ|xj, yj〉, (21)

10



where the maximum is over all maximal orthogonal POMs Xn and Yn on Hn. Clearly,

C(n)
max(ρ) is a non-decreasing function of n, and converges to Cmax(ρ), i.e., defining d :=

max{d1, d2},
C(d)

max(ρ) ≤ C(n)
max(ρ) ≤ C(∞)

max(ρ) = Cmax(ρ). (22)

An explicit expression for C(2)
max(ρ) is given in Sec. IV, and general upper bounds for C(n)

max(ρ)

are obtained in Sec. V.

Now, a maximal POM A with n elements may trivially be extended to an infinite number

of elements by defining |aj〉 := 0 for j > n. Hence, such n-valued POMs may be thought of

as lying on the ‘boundary’ of the set of all maximal POMs. It would be of interest to show

that C(n)
max(ρ), corresponding to the maximum of coincidence rate over a restricted portion

of this boundary, is also (at the least) a local maximum of coincidence rate with respect

to the full set of maximal POMs. The following corollary to Proposition 2 shows that the

conditions in Eq. (14) are sufficient for this to be the case.

Corollary: If the Hermitian operators V and W defined in Eq. (12) satisfy V ≥ 〈bj |ρ|bj〉
and W ≥ 〈aj|ρ|aj〉 for all j, for maximal POMs A(n) and B(n) achieving C(n)

max(ρ), then

C(n)
max(ρ) is a local maximum of coincidence rate with respect to the set of all maximal POMs.

Proof. By the above Lemma, maximal POMs with at most n non-zero elements can be

represented by the set of maximal orthogonal POMs on Hn. Further, since the group of

unitary transformations U(n) × U(n) is compact, the global maximum of coincidence rate

over such orthogonal POMs must be actually be achievable, by two orthogonal POMs Xn

and Yn on Hn, having eigenstates |x1〉, . . . , |xn〉 and |y1〉, . . . , |yn〉 respectively. It may be

shown, just as per the proof of Proposition 2, that these eigenstates must satisfy Eqs. (19)

and (20) with the ranges of j, k, l restricted 1, 2, . . . , n (and with M and N restricted to Hn).

Further, any extension of Xn and Yn to orthogonal POMs X and Y on H∞ must satisfy

E|xj〉 = 0 = F |xj〉 for all j > n. It follows for such X and Y that (i) Eq. (19) is trivially

satisfied (implying the corresponding POMs A and B are extremal); (ii) the first and second

terms of Eq. (20) are the same as for Xn and Yn when j ≤ n, and nonnegative when j > n

(as a consequence of the premise of the Corollary); and (iii) the third term in Eq. (20) is the

same as for Xn and Yn when j ≤ n, and vanishes when j > n. Hence, from Proposition 2,

C(n)
max(ρ) is a local maximum of coincidence rate with respect to POMs having an arbitrary

number of elements.

11



Note from the above proof that the maximal POMs A(n) and B(n) achieving C(n)
max(ρ) must

satisfy Eq. (8), with k and l restricted to the range 1, 2, . . . , n. It may be checked (noting that

ρ is Hermitian) that this places 2n(n− 1) real constraints on the elements of A(n) and B(n),

which are invariant under the n! permutations of the elements that preserve the condition

k 6= l. On the other hand, to specify two arbitrary maximal POMs, each having no more

than n non-zero elements, requires 2n(n − 1) real parameters (corresponding to specifying

the unitary transformations |xj〉 = UX |zj〉, |yj〉 = UY |zj〉 on Hn relative to some fixed

orthonormal basis {|z〉}, up to arbitary phases), with (n!)2 possible orderings of the elements

(i.e., n! orderings for each POM). It is therefore expected, for a generic density operator ρ,

that there are n! pairs of extremal candidates for A(n) and B(n) (for density operators having

particular symmetries, there will be further extrema, as per the last paragraph of Sec. III A).

However, it is conjectured in the next subsection that C(n)
max(ρ) is in fact independent of n,

which is equivalent to equality throughout in Eq. (22). If true, this means that no more

than d! candidates for the optimal observables need be checked in the generic case.

C. Two examples and one conjecture

As a first example, we will consider the case of ‘trine’ measurements on a two-qubit sys-

tem, for which the measurement on each qubit optimally distinguishes between the states of

the ensemble prepared by the measurement on the other qubit, and vice versa. Surprisingly,

these measurements do not generate a global (or even a local) maximum of coincidence rate.

In particular, let {|1〉, |2〉} be a basis set for either qubit, and consider the 3-valued ‘trine’

observables A ≡ B ≡ {2
3
|φj〉〈φj|}, where the normalised kets

|φ1〉 := |1〉, |φ2〉 :=
1

2

(

|1〉 +
√

3 |2〉
)

, |φ2〉 :=
1

2

(

|1〉 −
√

3 |2〉
)

form the vertices of an equilateral triangle in the Bloch representation. For the pure bipartite

state ρ = |ψ〉〈ψ|, with

|ψ〉 :=
1√
2

(|1〉 ⊗ |1〉 + |2〉 ⊗ |2〉) ,

it is then easily checked that

〈aj|ρ|aj〉 =
1

3
|φj〉〈φj| = 〈bj|ρ|bj〉

on the respective components. It follows that the operators V and W defined in Eq. (12)

are each equal to 1
3
1̂, implying from Proposition 1 that A and B generate an extremal value

12



of coincidence rate, given by

C(A,B|ρ) = tr[V ] = 2/3.

Further, the conditions in Eqs. (14) are trivially satisfied for this example, implying

via Eq. (13) that A optimally distinguishes between members of the ensemble of states

{|φj〉〈φj|; 1
3
} prepared by measurement of B, and vice versa (see also Sec. IV.1(a) of Ref. [3]).

However, A and B above do not generate a global maximum of coincidence rate for state

ρ, as the maximum possible value of unity may be achieved by instead choosing POMs with

elements diagonal with respect to any Schmidt decomposition of |ψ〉. Indeed, A and B

above do not even generate a local maximum of coincidence rate - the extremal value of 2/3

in fact corresponds to a saddle point. To see this, note first that the optimal distinguishing

property implies that varying either A or B (while keeping the other fixed) must decrease the

coincidence rate. Hence, the extremal value of 2/3 represents a maximum with respect to

such variations. On the other hand, consider the one-parameter ‘mirror-symmetric’ family

of observables A(α) ≡ B(α) ≡ {fj(α)|φ(α)
j 〉〈φ(α)

j |}, with 0 ≤ α ≤ 1, f1(α) = 1 − α, f2,3(α) =

(1 + α)/2, and [15]

|φ(α)
1 〉 := |1〉, |φ(α)

2,3 〉 = (1 + α)−1/2
(√

α|1〉 ± |2〉
)

.

Choosing α = 1/3 corresponds to the trine observables. It is straightforward to calculate

C(A(α), B(α)|ρ) =
2

3
+

3

4

(

α− 1

3

)2

,

and hence the extremal value of 2/3 represents a minimum of coincidence rate with respect

to the variation of α [16].

As an example of Proposition 2, consider now a separable state of the form

ρ =
d
∑

j=1

λj |ψj〉〈ψj| ⊗ |χj〉〈χj|, (23)

where the mutual orthogonality property 〈ψj |ψk〉 = δjk is satisfied, and each |χj〉 is arbitrary.

Let A be the maximal orthogonal POM defined by |aj〉 := |ψj〉, i.e., the optimal POM for

distinguishing members of the ensemble {|ψj〉〈ψj |;λj}; and let B be the maximal POM

which optimally distinguishes between members of the pure-state ensemble {|χj〉〈χj|;λj}
(the existence of such a maximal POM B follows from Theorem 2 of Ref. [17]). Thus, from

Eqs. (12) and (13),

(V − λj |ψj〉〈ψj |) |aj〉 = 0 = (W − λj|χj〉〈χj |) |bj〉, V ≥ λj |ψj〉〈ψj |, W ≥ λj|χj〉〈χj |.
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It is then straightforward to check that both conditions of Proposition 2 are satisfied by any

X and Y corresponding to A and B respectively (in particular, the third term in Eq. (20)

vanishes identically, since the orthogonality of the elements of A implies that ρ and |xj〉〈xj |
must commute). Hence this choice of A and B generates a local maximum of coincidence

rate. Indeed, since a measurement outcome A = aj for the first component is perfectly

correlated with preparation of state |χj〉 for the second component, and since B is the best

possible measurement for distinguishing between such prepared states, the above choice of

A and B is intuitively expected to generate a global maximum of coincidence rate.

Note that if d = 2 in Eq. (23), then B is the orthogonal POM generated by the eigenstates

of [3]

η := λ1|χ1〉〈χ1| − λ2|χ2〉〈χ2|.

The corresponding maximum value of coincidence rate follows as (cf. Eq. (2.34) in Chap. IV

of Ref. [3])

C(A,B|ρ) =
1

2
(1 + tr[|η|]) =

1

2

[

1 +
(

1 − 4λ1λ2|〈χ1|χ2〉|2
)1/2

]

. (24)

This result is significantly generalised in Sec. IV.

Finally, note that in the above example that A is an orthogonal POM, having the min-

imum possible number, n = d, of non-zero elements. We conjecture that this may be an

instance of a general rule. As motivation, observe that if Alice and Bob each measure ob-

servables having n ≥ d possible outcomes, then the outcomes will typically have a greater

degree of randomness when n > d. For example, the entropy H(A) of a maximal POM A is

bounded below by

H(A) = −
∑

j

pj log2 pj ≥ − log2 max
j
pj ≥ − log2 max

j
〈aj|aj〉,

which is nontrivial if A is non-orthogonal (i.e., if n > d). Similarly, the joint entropy of A

and B is bounded below by

H(AB) ≥ − log2 max
j,k

〈aj |aj〉 〈bk|bk〉.

Further, the more random a distribution is, the more spread out it is over the set of possible

outcomes. Hence, the sum over the diagonal elements of the joint distribution pjk (i.e.,

the coincidence rate), will typically be smaller. It follows that choosing n > d is typically

expected to have a decreasing effect on the maximum achievable coincidence rate:

14



Conjecture: The global maximum of coincidence rate, for a bipartite density operator

with finite support, can always be achieved by observables A and B having at most d =

max{d1, d2} possible outcomes, where d1 and d2 are the Hilbert space dimensions defined in

Eq. (16).

Note that the conjecture implies at least one of A and B corresponds to an orthogonal

POM, depending on whether d = d1 and/or d = d2. Note further that the conjecture

corresponds to the case of equality throughout in Eq. (22), i.e., to the condition

Cmax(ρ) ≡ C(d)
max(ρ). (25)

This conjecture is consistent with the convexity properties discussed in Sec. II and, if true,

would greatly simplify the numerical determination of the maximum coincidence rate, as only

POMs with d elements would need to be considered. Partial numerical support has been

found for the conjecture, for the case of two-qubit systems. In particular, the evaluation

of coincidence rate for ≈ 1011 pairs of maximal POMs having no more than 3 non-zero

elements, for each member of a random sample of 1200 bipartite density operators, indicates

that C(2)
max ≡ C(3)

max.

IV. MAXIMUM SPIN CORRELATION FOR TWO QUBITS

An exact result for two-qubit systems is derived here, which also introduces the basic

method used in the following section to derive general upper bounds for the coincidence

rate.

A system of two qubits is described by a density operator ρ on H2 ⊗ H2, so that d1 =

d2 = d = 2. Consider the problem of finding the maximal two-valued POMs A and B which

maximise the coincidence rate. Such POMs are necessarily orthogonal, corresponding to

the measurement of spin in some direction, and hence, noting Eq. (21), the corresponding

coincidence rate can be written as

C(2)
max(ρ) = max

a,b
C(σ(1) · a, σ(2) · b|ρ), (26)

where a and b are unit directions. Note that C(2)
max(ρ) is in fact equal to the global maximum

of coincidence rate, Cmax(ρ), if the conjecture in Eq. (25) is correct.

To determine C(2)
max(ρ), let |m〉 denote the +1 eigenstate of σ ·m for unit direction m, so

that |m〉〈m| = (1 + σ ·m)/2. Hence, A ≡ {|a〉〈a|, | − a〉〈−a|}, B ≡ {|b〉〈b|, | − b〉〈−b|}, and
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the coincidence rate follows via Eq. (6) as

C(A,B|ρ) =
1

2
tr[ρ(1 + σ(1) · a⊗ σ(2) · b)] =

1

2
(1 + aTSb),

where S is the 3 × 3 ‘spin correlation’ matrix defined by

Sjk := 〈σ(1)
j ⊗ σ

(2)
k 〉. (27)

Note that S is real, but in general is not symmetric.

Now, the singular value decomposition theorem [18] states that any real p× q matrix S

can be put in the form

S = R1DR
T
2 , (28)

where R1 and R2 are real orthogonal matrices (of dimensions p× p and q × q respectively),

and D is a real p× q matrix of the form

Djk = sjδjk, s1 ≥ s2 ≥ . . . ≥ 0.

The numbers sj are called the singular values of S, and are just the square roots of the

eigenvalues of each of STS and SST , while R1 and R2 are formed by the respective eigen-

vectors of STS and SST [18]. The largest singular value, s1, is also known as the spectral

norm of S.

It follows in particular, defining u = RT
1 a and v = R2b, and using the Schwarz inequality,

that for unit vectors a and b one has

max
a,b

aTSb = max
u,v

|uTDv|

= max
u,v

∣

∣

∣

∣

∣

∣

∑

j

(
√
sjuj)(

√
sjvj)

∣

∣

∣

∣

∣

∣

≤ max
u,v

[
∑

j

sj(uj)
2]1/2 [

∑

k

sk(vk)
2]1/2

= max
u

∑

j

sj(uj)
2 ≤ (max

j
sj)

∑

j

(uj)
2 = s1,

with equality obtained for the choice u = v = x := (1, 0, 0). Thus,

C(2)
max(ρ) =

1

2
(1 + s1), (29)

where s1 is the spectral norm of the spin-correlation matrix S defined in Eq. (27) (hence one

must have s1 = 1 for all pure states), with this maximum coincidence rate being achieved

via spin measurements in the directions

a = R1x, b = R2x.
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The case of spin measurements on two qubits is thus completely solved.

As a simple example, consider the separable state

ρ = λ1|z〉〈z| ⊗ τ1 + λ2| − z〉〈−z| ⊗ τ2

for arbitary qubit density operators τ1 and τ2. One finds that all elements of the spin-

correlation matrix vanish other than the third row, which is given by the 3-vector r with

components

rk := λ1tr[τ1σ
(2)
k ] − λ2tr[τ2σ

(2)
k ].

It follows that only the 33-component of SST is non-zero, and equal to r · r, yielding

C(2)
max(ρ) = (1 + |r|)/2.

This result generalises Eq. (24) of the previous section, and greatly simplifies calculation

of the corresponding coincidence rate, as it does not require explicit diagonalisation of the

operator η. Note that the coincidence rate is equal to the average probability for optimally

discriminating between members of the ensemble {τj ;λj} [3].

As a second example, consider the isotropic state [19]

ρw = w|Ψ−〉〈Ψ−| + 1 − w

3
1̂T ,

where |Ψ−〉 denotes the singlet state, 1̂T = 1̂ − |Ψ−〉〈Ψ−| denotes the unit operator on the

triplet subspace, and 0 ≤ w ≤ 1. This state is rotationally-invariant, and the spin-correlation

matrix is easily calculated to be Sjk = −(4w − 1)δjk/3. It follows immediately that

C(2)
max(ρw) =

1

2

(

1 +
|4w − 1|

3

)

,

with the maximum coincidence rate being achieved by the choice a = b for 0 ≤ w ≤ 1/4,

and a = −b for 1/4 ≤ w ≤ 1.

Finally, for a general factorisable state ρ = ρ1 ⊗ ρ2, with ρ1 = (1 + m · σ)/2 and ρ2 =

(1 + n · σ)/2, the spin correlation matrix is just the outer product S = mnT , so that

SST = (n · n)mmT , with eigenvalues (m ·m)(n · n), 0, and 0. It follows immediately from

Eq. (29) that the maximum possible coincidence rate for two uncorrelated qubits is given by

C(2)
max(ρ1 ⊗ ρ2) =

1

2
(1 + |m| |n|) ,

achieved by the choice of the measurement directions a = m and b = n.
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V. BOUNDS FOR COINCIDENCE RATE

A. A general upper bound

Here an upper bound is given for C(n)
max(ρ) in Eq. (21), i.e., for the maximum achievable

coincidence rate when Alice and Bob are restricted to measurements of n-valued observables.

This bound is tight for the case n = 2, reducing to Eq. (29) above. Conversely, taking the

limit n → ∞ gives a global upper bound for Cmax(ρ), which turns out to be equal to the

computable cross norm of ρ [7]. Note that if the conjecture in Eq. (25) is correct, then

taking n = d will give a much tighter bound in general for Cmax(ρ).

First, it is well known that the traceless Hermitian operators on an n-dimensional Hilbert

space Hn form a real vector space of dimension n2−1, with inner product (M,N) := tr[MN ]

[20]. Hence, if {Kp} and {Lq} denote two orthonormal basis sets for this vector space, then

tr[KpKq] = δij = tr[LpLq], Kp =
∑

q

RpqLq, (30)

for some orthogonal matrix R (i.e., RRT = I). It follows that the trace-free part of any

operator Z on Hn can be written as

Z − tr[Z]

n
1̂ =

∑

p

tr[ZKp]Kp =
∑

q

tr[ZLq]Lq, (31)

and that any bipartite density operator ρ on Hn ⊗Hn can be expressed as

ρ =
1

n2
1̂ ⊗ 1̂ +

∑

p

upKp ⊗ 1̂ +
∑

q

vq 1̂ ⊗ Lq +
∑

p,q

Tpq Kp ⊗ Lq, (32)

where

up := 〈Kp ⊗ 1̂〉/n, vq := 〈1̂ ⊗ Lq〉/n, Tpq := 〈Kp ⊗ Lq〉. (33)

This is referred to as a Fano form for ρ [5, 6].

Now, using Eqs. (30)-(33), the coincidence rate for two maximal orthogonal POMs Xn ≡
{|xj〉〈xj |} and Yn ≡ {|yj〉〈yj|} on Hn simplifies to

C(Xn, Yn|ρ) = 1/n+ Tr[TRW ],

where Tr denotes the matrix trace, and

Wpq :=
∑

j

〈xj|Lp|xj〉 〈yj|Lq|yj〉. (34)
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Further, Eq. (7.4.14) of Ref. [18] implies, for any two real matrices T and W and orthogonal

matrix R, that

|Tr[TRW ]| ≤
∑

k

sk(T )sk(W ),

where s1(P ) ≥ s2(P ) ≥ . . . denote the singular values of matrix P (see Sec. IV). Hence,

noting Eq. (21), one has

C(n)
max(ρ) ≤ 1/n+

∑

k

sk(T )sk(W ). (35)

To simplify this upper bound, note first that W can be written, in terms of the vectors

f (j)
p := 〈xj |Lp|xj〉, g(j)

p := 〈yj|Lp|yj〉,

as the sum of outer products W =
∑

j f (j) (g(j))T . Using Eq. (31) one finds

f (j) · f (k) = δjk − 1/n = g(j) · g(k),

implying that

W TW =
∑

j

g(j) (g(j))T = (W TW )2, Tr[W TW ] = n− 1.

Thus, W TW is an (n−1)-dimensional projection matrix, implying that the non-zero singular

values of W consist of precisely n− 1 1s. The above upper bound therefore reduces to

C(n)
max(ρ) ≤ 1/n+

n−1
∑

k=1

sk(T ), (36)

where the matrix T is defined in Eq. (33).

The bound can be further simplified, via a judicious choice of the basis sets {Kp} and

{Lq}. In particular, recall that ρ only has support on the subspace H1 ⊗H2 of Hn ⊗Hn (see

Sec. III B). The first (d1)
2 − 1 elements of {K1, K2, . . .} can therefore be chosen to form a

basis set for the traceless operators on H1, and the first (d2)
2 − 1 elements of {L1, L2, . . .}

can similarly be chosen to form a basis set for the traceless operators on H2. Two further

basis elements, relabelled as K0 and L0 for convenience, will be chosen to have the forms

K0 := α1E − β1(1̂ − E), L0 := α2F − β2(1̂ − F ),

where E and F denote the projections from Hn to H1 and H2. The requirements tr[K0] =

tr[L0] = 0 and tr[(K0)
2] = tr[(L0)

2] = 1 imply that

α1 = (1/d1 − 1/n)1/2 , β1 = α1d1/(n− d1),
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α2 = (1/d2 − 1/n)1/2 , β2 = α2d2/(n− d2).

Since the remaining basis elements must be orthogonal to the above basis elements, they

cannot contribute to the Fano form of ρ in Eq. (32). Hence, using Eq. (33), the only nonzero

rows and columns of the matrix T are given by the (d1)
2 × (d2)

2-submatrix

T (n) :=







〈K0 ⊗ L0〉 〈K0 ⊗ Lq〉
〈Kp ⊗ L0〉 〈Kp ⊗ Lq〉





 =







α1α2 α1〈1̂1 ⊗ Lq〉
α2〈Kp ⊗ 1̂2〉 〈Kp ⊗ Lq〉





 , (37)

where 1̂1 and 1̂2 denote the identity operators on H1 and H2 respectively, and 1 ≤ p ≤
(d1)

2−1, 1 ≤ q ≤ (d2)
2 −1. Substitution into Eq. (36) yields the main result of this section:

Theorem: The maximum coincidence rate obtainable for a bipartite state with finite

support, via maximal POMs having no more than n nonzero elements, is bounded above by

C(n)
max(ρ) ≤ 1/n+

min{n−1,δ2}
∑

k=1

sk(T
(n)) (38)

where δ := min{d1, d2}, and the matrix T (n) is defined in Eq. (37).

Since local unitary transformations correspond to left and right multiplication of T (n) by

orthogonal matrices, which leave the singular values unchanged [18], this upper bound is

invariant under such transformations.

For the case of two qubits, with n = d1 = d2 = 2, one may choose Kp = σ(1)
p /

√
2 and

Lq = σ(1)
q /

√
2. The ‘zeroth’ row and column of T (n) vanish for this case, since α1 = α2 = 0,

leaving a 3 × 3-submatrix equal to one-half of the spin-correlation matrix S in Eq. (27).

Thus, for this case, the upper bound of the theorem reduces to (1 + s1(S))/2, which can

in fact always be achieved, as per Eq. (29) of the previous section. However, for n > 3 the

upper bound in Eq. (38) cannot always be attained, essentially because the set of orthogonal

matrices R in Eq. (30) is larger than the set of unitary transformations on Hn [20].

B. Examples

Note first that taking the limit n → ∞ in Eq. (38) yields a global upper bound for the

coincidence rate, independent of the possible number of measurement outcomes:

Cmax(ρ) ≤
δ2
∑

k=1

sk(T
(∞)) = Tr

[

√

(T (∞))TT (∞)

]

=
∥

∥

∥T (∞)
∥

∥

∥

Tr
. (39)

20



Thus, the upper bound is just the trace norm of T (∞). Noting that α1 → 1/
√
d1 and

α2 → 1/
√
d2 in this limit, it follows that the coefficients of T (∞) yield a Fano form for ρ on

H1 ⊗H2, via

ρ = T
(∞)
00 1̂1 ⊗ 1̂2/

√

d1d2 +
∑

p≥1

T
(∞)
p0 Kp ⊗ 1̂2/

√

d2 +
∑

q≥1

T
(∞)
0q 1̂1 ⊗Lq/

√

d1 +
∑

p,q≥1

T (∞)
pq Kp ⊗Lq.

(40)

The trace norm of T (∞) may therefore be recognised as the ‘computable cross norm’ measure

of quantum entanglement [6, 7], i.e., the maximum possible coincidence rate, Cmax(ρ), is

bounded above by the computable cross norm.

The computable cross norm cannot be greater than unity for any separable states [6, 7],

and hence the upper bound in Eq. (39) is always nontrivial for separable states (and for

a large proportion of entangled states). However, a stronger bound is postulated further

below.

Second, it is of interest to consider measurements restricted to the minimum number of

possible measurement outcomes, i.e., with n = d. For this case α1 = α2 = 0, implying that

the only nonvanishing part of T (d) is the (d2
1 − 1)× (d2

2 − 1) submatrix T̃pq = 〈Kp ⊗Lq〉 with

p, q ≥ 1, yielding

C(d)
max(ρ) ≤ 1/d+

min{d−1,δ2−1}
∑

k=1

sk(T̃ ). (41)

As noted above, this bound is tight for the case d1 = d2 = 2. For two-qudit systems it bounds

the coincidence rate for the case of measurements described by orthogonal POMs. It may

also be noted, in analogy to the computable cross norm above, that T̃ has similarly been

used in partial characterisations of entanglement [21, 22]. For example, the trace norm of

T̃ is never greater than [(1 − 1/d1)(1 − 1/d2)]
1/2 for any separable state [21]. These general

underlying connections, between bounds for correlations and measures of entanglement,

would be an interesting subject for further investigation (see also Sec. VI).

Third, a simple yet general example of the Theorem is provided by the Werner state for

two qudits [19], which has the Fano form [21]

ρx :=
1

d2
1̂ ⊗ 1̂ +

x− 1/d

d2 − 1

∑

p≥1

Kp ⊗Kp,

with −1 ≤ x ≤ 1. It follows via Eqs. (32), (33) and (37) that T (n) is diagonal, and so, noting
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that α1α2 = 1/d− 1/n for this case, the Theorem yields

C(n)
max(ρx) ≤

1

n
+ (D − 1)

|x− 1/d|
d2 − 1

+ max

{

1

d
− 1

n
,
|x− 1/d|
d2 − 1

}

,

where D := min{n− 1, d2}. Note that, in the limit n → ∞, the righthand side approaches

the computable cross norm for Werner states, 1/d + |x − 1/d|, as expected [7]. It is also

straightforward to verify via direct calculation that this bound is tight for the case n = d

and x ≥ 1/d, i.e.,

C(d)
max(ρx) = 1/d+ |x− 1/d|/(d+ 1) (42)

for x ≥ 1/d, achieved by the choice A = B. For x < 1/d, a modification of the Theorem

for negative definite T̃ gives the tight upper bound C(d)
max(ρx) = 1/d + |x − 1/d|/(d2 − 1),

achieved by maximal orthogonal POMs satisfying |aj〉 = |bP (j)〉 for any permutation P of

1, 2, . . . , d with P (j) 6= j for all j. This example may be regarded as a generalisation of the

d = 2 isotropic example in Sec. IV, where one identifies x with 1 − 2w.

Note finally that if the conjecture in Eq. (25) is correct, then the bound in Eq. (41) is in

fact an upper bound for Cmax(ρ), which is generally much tighter than the computable cross

norm bound in Eq. (39). For example, consider any state for which the reduced density

operators are maximally random, i.e., where ρ1 = 1̂1/d1 and ρ2 = 1̂2/d2 (eg, the Werner

state ρx considered above). It then follows trivially via Eq. (37) that

∥

∥

∥T (∞)
∥

∥

∥

Tr
= (d1d2)

−1/2 +
∥

∥

∥T̃
∥

∥

∥

Tr
≥ 1/d+

∥

∥

∥T̃
∥

∥

∥

Tr
.

Thus, for such states, the bound in Eq. (41) is never greater than that in Eq. (39), and is

generally smaller whenever d ≤ δ2.

VI. CONCLUSIONS

It is well known that determining the maximum mutual information between the compo-

nents of a given bipartite system is a difficult problem [9]. The results of this paper indicate

that it is similarly not a straightforward matter to maximise the coincidence rate, despite

(i) its linearity with respect to the density operator, and (ii) formal similarities with the

well known problem of optimal state discrimination. A notable exception is the case of spin

measurements on two-qubit systems, which has been fully solved in Sec. IV. More generally,

22



one only has available the formal equations for the correlation basis derived in Proposi-

tions 1 and 2 of Sec. III, and the upper bounds for n-valued measurements derived in the

Theorem of Sec. IV. These general results could be substantially strengthened if the Con-

jecture of Sec. III C could be verified. It would further be of interest to determine whether

or not the ‘optimal discrimination’ conditions in Eq. (14) must be satisfied by observables

corresponding to a global maximum of coincidence rate.

It is worth mentioning here some generalisations of the results in Secs. IV and V, to

other linear measures of correlation. For example, note that the spin correlation matrix S

in Eq. (27) is closely related to the spin covariance matrix S defined by

Sjk := 〈σ(1)
j ⊗ σ

(2)
k 〉 − 〈σ(1)

j 〉 〈σ(2)
k 〉.

In particular, explicitly indicating dependence on the density operator, one has S(ρ) =

S(ρ)−S(ρ1 ⊗ρ2). This covariance matrix has been of recent interest in the characterisation

of entanglement [13, 22]. For example, the main result in Sec. IV of Ref. [22] may be

simplified to

Tr[S
T
S] = 4 tr[(ρ− ρ1 ⊗ ρ2)

2] ≤ 1, (43)

for all separable two-qubit states, i.e., a separable state ρ can lie at distance of at most 1/2

from ρ1 ⊗ ρ2, as measured by the Hilbert-Schmidt metric.

Now, the covariance of two arbitrary spin observables, corresponding to directions a and

b, may be written as

Cov(A,B|ρ) = aTSb.

The methods of Sec. IV then immediately lead to the upper bound

max
a,b

Cov(A,B|ρ) = s1(S) (44)

analogous to Eq. (29), i.e., the maximum possible spin covariance for state ρ is given by

the spectral norm of the spin covariance matrix. Note that this bound is invariant under

local unitary transformations. It follows, for example, that Theorem 1 of Ref. [13] may be

strengthened to the observable-independent statement that

tr[ρ2] +
1

2
s1(S) ≤ 1 (45)

for all separable states of two-qubit systems. Noting Eq. (44), this inequality is also valid if

Cov(A,B|ρ) is substituted for s1(S), for any spin observables A and B. Similarly, Eq. (24)
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of Ref. [13] may be strengthened, using the methods of Sec. IV, to the entanglement bound

EN(ρ) ≥ max{0, log2[s1(S) + s2(S)]} (46)

for the logarithmic negativity of a two-qubit system. Thus, as in Sec. V, correlation and

entanglement bounds are seen to be closely related.

Finally, consider some general linear measure of correlation, of the form

G(A,B|ρ) :=
∑

j,k

pjkgjk =
∑

jk

gjk〈aj , bk|ρ|aj, bk〉.

Coincidence rate corresponds to the choice gjk = δjk. The related ‘covariance’ measure

G(A,B|ρ) := G(A,B|ρ) −G(A,B|ρ1 ⊗ ρ2)

then has the desirable property of automatically vanishing for uncorrelated states. The

methods of Sec. V A may then be applied to G, with ρ replaced by ρ− ρ1 ⊗ ρ2, to yield the

corresponding upper bound

∣

∣

∣G(A(n), B(n)|ρ)
∣

∣

∣ =
∣

∣

∣Tr[TRW ]
∣

∣

∣ ≤
∑

k

sk(T ) sk(W
G), (47)

analogous to Eq. (35), for maximal POMs A(n) and B(n) having n elements each. Here

T pq := 〈Kp ⊗ Lq〉 − 〈Kp〉 〈Lq〉,

and the definition of W in Eq. (34) is generalised to

WG
pq :=

∑

j,k

gjk〈xj|Lp|xj〉 〈yk|Lq|yk〉.

This bound is tight for spin measurements on two-qubit systems. For the choice gjk = δjk

the bound simplifies to

∣

∣

∣Corr(A(n), B(n)|ρ)
∣

∣

∣ ≤
min{n−1,δ2−1}

∑

k=1

sk(T ) (48)

for the ‘correlation’
∑

j(pjj − pjqj) of any two n-valued maximal POMs (see Sec. II), gen-

eralising Eq. (44) above. Note that one may simplify the calculation of the above bounds

by choosing the basis elements as in Sec. V, allowing one to replace T by the submatrix

corresponding to 1 ≤ p ≤ (d1)
2 − 1 and 1 ≤ q ≤ (d2)

2 − 1.
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APPENDIX A: PROOF OF PROPOSITION 2

To prove Proposition 2 in Sec. III B, note first that all infinitesimal variations of the

orthogonal POMsX and Y in Eq. (18) are generated by infinitesimal unitary transformations

on H∞, and hence are of the form

|xj〉 → exp(iǫM)|xj〉, |yj〉 → exp(iǫN)|yj〉

for arbitrary Hermitian operators M and N on H∞, where ǫ is a infinitesimal real parameter.

Note from Eq. (18) that these variations are equivalent to keeping X and Y fixed and instead

varying the density operator, viz.

ρ→ ρǫ := exp(−iǫK)ρ exp(iǫK),

with K := M ⊗ 1 + 1 ⊗N . Expanding in powers of ǫ gives

ρǫ = ρ− i[K, ρ] − (1/2)ǫ2[K, [K, ρ]] + . . .

and hence the corresponding variation in coincidence rate is

δC = −iǫ
∑

j

〈xj , yj|[K, ρ]|xj, yj〉 − (1/2)ǫ2
∑

j

〈xj, yj|[K, [K, ρ]]|xj, yj〉 + . . . .

Requiring the first-order variation to vanish yields

0 = tr1(M
∑

j

[Xj, 〈yj|ρ|yj〉] ) + tr2(N
∑

j

[Yj, 〈xj |ρ|xj〉] )

for arbitrary M and N , where Xj and Yj denote |xj〉〈xj| and |yj〉〈yj| respectively. Hence,

each operator sum must vanish identically, and Eq. (19) follows as the matrix components

of these sums, with respect to the X and Y basis sets respectively.

Requiring the second-order variation to be no greater than zero, as is required for a local

maximum, is equivalent to

∑

j

{tr1 ([M, [M,Xj]〈yj|ρ|yj〉) + tr2 ([N, [N, Yj]〈xj|ρ|xj〉) + 2 tr (ρ [M,Xj|] ⊗ [N, Yj|])} ≥ 0.

Now, defining the Hermitian operators

Ṽ :=
∑

j

〈yj|ρ|yj〉 |xj〉〈xj |, W̃ :=
∑

j

〈xj|ρ|xj〉 |yj〉〈yj|,
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and using Eq. (17) and
∑

j Xj = 1, the summation over the first term may be simplified to

give

∑

j

tr1 ([M, [M,Xj ]〈yj|ρ|yj〉) =
∑

j

tr1 (MXj〈yj|ρ|yj〉M + h.c.− 2XjM〈yj|ρ|yj〉M)

=
∑

j

tr1

(

XjM [Ṽ + Ṽ †]M − 2XjM〈yj |ρ|yj〉M
)

= 2
∑

j

〈xj|M(Ṽ − 〈bj |ρ|bj〉)M |xj〉.

The summation over the second term may be similarly simplified in terms of W̃ . Equa-

tion (20) then immediately follows if it can be shown that Ṽ = V and W̃ = W .

To do so, note first from Eqs. (12) and (17) that Ṽ E = V and W̃F = W . Together with

their conjugates, these equations imply [Ṽ , E] = 0 = [W̃ , F ], and hence that

Ṽ = V + (1 − E)Ṽ (1 − E), W̃ = W + (1 − F )W̃ (1 − F ).

Substitution into

(Ṽ − 〈yj|ρ|yj〉) |xj〉 = 0, (W̃ − 〈xj |ρ|xj〉)|yj〉 = 0,

(which is equivalent to Eq. (19) precisely as per the equivalence of Eqs. (8) and (9) in

Proposition 1), and using Eqs. (8) and (17), then gives

(1 −E)Ṽ (1 −E)|xj〉 = 0 = (1 − F )W̃ (1 − F )|yj〉

for all j. But {|xj〉} and {|yj〉} are basis sets for H∞, implying the operators must vanish

identically, and the desired result immediately follows.
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