121 research outputs found

    Decision support system for peatland management in the humid tropics

    Get PDF
    Large areas of globally important tropical peatland in Southeast Asia are threatened by land clearance, degradation and fire, jeopardising their natural functions as reservoirs of biodiversity, carbon stores and hydrological buffers. Many development projects on tropical peatlands have failed because of lack of understanding of the landscape functions of these ecosystems. Utilisation of these peatland resources for agriculture or other land use requires drainage which, unavoidably, leads to irreversible loss of peat through subsidence, resulting in severe disturbance of the substrate, CO2-emissions and problems for cultivation. To assist planners and managers in wise use of these tropical peatlands a decision support system (DSS) has been developed. This DSS, which is based on a GIS application, combines the Groundwater Modelling Computer Programme PMWIN with expert knowledge on subsidence, land use and water management. The DSS can be used to predict the long-term effects of different types of land use, e.g. peat swamp forest, sago or oil palm plantations, on the lifetime and associated CO2 release of these tropical peatlands. The type of land use dictates the required depth of the groundwater table, which on its turn has a significant effect on the sustainability of the peatland. Therefore, special attention should be paid when deciding which type of land use to pursuit. The Decision Support System (DSS) will help to improve the decision-making process. The groundwater model PMWIN was selected because it maintains a good balance between the complexity of the model (esp. regarding to its input data requirements) and the availability of input data. The groundwater model was calibrated using data from the Balingian Area, Central Sarawak, Malaysia. The model was used to predict, based on a given land use scenario, the ratio between surface and groundwater runoff, the depth of the groundwater table and recharge and discharge zones of the peat dome. Various land use scenarios, each with its own specific water management requirements, were developed and used to predict the long-term changes in ground level and associated CO2 release. For each scenario the following outcome was generated: time span after which the water management systems have to be deepened, time span after which gravity drainage is no longer possible, time span for peat disappearance. Final results are presented in the form of maps generated by the GIS application. These maps serve as a communication tool with stakeholders to demonstrate what the hydrological effects are on for instance a certain land use type and drainage system lay-out

    Exploration of the importance of physical properties of Indonesian peatlands to assess critical groundwater table depths, associated drought and fire hazard

    Get PDF
    Widespread degradation of Indonesian peatlands by deforestation and excessive drainage results into more frequent fires, particularly in El Niño years, which causes: (i) release of enormous amounts of peat soil carbon to the atmosphere, impacting climate, (ii) severe air pollution, affecting human health and air traffic, and (iii) decreased ecosystem services through loss of biodiversity. Groundwater table decline is the main driver of these negative processes and, therefore restoration of peatland hydrology is essential. Although groundwater table depth is critical to counteract peatland degradation, optimal depths are not generic for all peatlands, but depend on peat physical properties (i.e. water retention, unsaturated conductivity), which are related to the degree of peat humification (Fibric, Hemic, Sapric). Unfortunately only few of these peat physical properties are available while they are essential input data in hydrological models required to extend the usually short observed groundwater hydrographs. An experiment with the Soil-Water-Atmosphere-Plant model (SWAP) for two locations in Indonesian peatlands illustrates the impact of the degree of peat humification on physical properties and thereby on calculated groundwater table depth, hydrological drought and associated fires hazards. The Variable Threshold Method is applied to convert groundwater table depths into hydrological drought, and next the modified Keetch-Byram Drought Index (mKBDI) is used to assess wildfire hazard. Peat physical properties that reflect higher peat humification (Hemic and Sapric) result into lower water tables during dry periods, in particular during El Niño years, more severe hydrological drought, and an earlier and longer fire season. Using the limited available peat physical properties the importance is demonstrated of initiating a comprehensive programme to build a database of peat physical properties covering different environmental conditions in which tropical peatlands occur. Availability of such a database connected to a long-term monitoring programme, will support the ongoing rewetting, revegetation and revitalisation programme for Indonesian peatlands, which eventually will contribute to sustainable livelihoods for local people and reduce impact on the regional climate.</p

    Waterretentie- en doorlatendheidskarakteristieken van boven- en ondergronden in Nederland: de Staringreeks; vernieuwde uitgave 2001

    Get PDF
    Het bij Alterra aanwezige bestand van gemeten bodemfysische karakteristieken is de laatste jaren aanzienlijk uitgebreid. Deze uitbreiding heeft geleid tot een vernieuwing van de in 1994 uitgebrachte Staringreeks. De Staringreeks vermeldt de gemiddeldebodemfysische karakteristieken voor alle onderscheiden 18 boven- en 18 ondergronden. De reeks geeft een complete landelijke dekking van alle op de Bodemkaart van Nederland 1 : 50 000 onderscheiden bodemeenheden. Om het gebruik van de bodemfysische karakteristieken in simulatiemodellen te vereenvoudigen zijn de karakteristieken beschreven met analytische vergelijkingen. Tevens is een programma beschikbaar waarmee de gebruiker aan de hand van de bodemkenmerken textuur, organischestofgehalte, dichtheid, boven- of ondergrond met behulp van continue vertaalfuncties voorspellingen kan maken van de bodemfysische karakteristieken
    corecore