5 research outputs found

    Activation of myosin V–based motility and F-actin–dependent network formation of endoplasmic reticulum during mitosis

    Get PDF
    It is widely believed that microtubule- and F-actin–based transport of cytoplasmic organelles and membrane fusion is down-regulated during mitosis. Here we show that during the transition of Xenopus egg extracts from interphase to metaphase myosin V–driven movement of small globular vesicles along F-actin is strongly inhibited. In contrast, the movement of ER and ER network formation on F-actin is up-regulated in metaphase extracts. Our data demonstrate that myosin V–driven motility of distinct organelles is differently controlled during the cell cycle and suggest an active role of F-actin in partitioning, positioning, and membrane fusion of the ER during cell division

    Myosin5a tail associates directly with Rab3A-containing compartments in neurons

    Get PDF
    Author Posting. © The Author(s), 2011. This is the author's version of the work. It is posted here by permission of American Society for Biochemistry and Molecular Biology. The definitive version was published in Journal of Biological Chemistry, 286 (2011): 14352-14361, doi:10.1074/jbc.M110.187286.Myosin-Va (Myo5a) is a motor protein associated with synaptic vesicles (SVs) but the mechanism by which it interacts has not yet been identified. A potential class of binding partners are Rab GTPases and Rab3A is known to associate with SVs and is involved in SV trafficking. We performed experiments to determine whether Rab3A interacts with Myo5a and whether it is required for transport of neuronal vesicles. In vitro motility assays performed with axoplasm from the squid giant axon showed a requirement for a Rab GTPase in Myo5a-dependent vesicle transport. Furthermore, mouse recombinant Myo5a tail revealed that it associated with Rab3A in rat brain synaptosomal preparations in vitro and the association was confirmed by immunofluorescence imaging of primary neurons isolated from the frontal cortex of mouse brains. Synaptosomal Rab3A was retained on recombinant GST-tagged Myo5a tail affinity columns in a GTP-dependent manner. Finally, the direct interaction of Myo5a and Rab3A was determined by sedimentation v e l o c i t y analytical ultracentrifugation using recombinant mouse Myo5a tail and human Rab3A. When both proteins were incubated in the presence of 1 mM GTPγS, Myo5a tail and Rab3A formed a complex and a direct interaction was observed. Further analysis revealed that GTP-bound Rab3A interacts with both the monomeric and dimeric species of the Myo5a tail. However, the interaction between Myo5a tail and nucleotidefree Rab3A did not occur. Thus, our results show that Myo5a and Rab3A are direct binding partners and interact on SVs and that the Myo5a/Rab3A complex is involved in transport of neuronal vesicles
    corecore