13,470 research outputs found

    Aging in China

    Get PDF
    This article reports on a description of aging in China, in general, and Shanghai, in particular, with contrasts to the aging taking place in Hong Kong. Focused upon are the consequences of population aging on informal and formal support systems in the present and for the future. The efforts in the two cities of Shanghai and Hong Kong reflect differences in systems but are both influenced by traditional practices of a Chinese society

    Pinned modes in lossy lattices with local gain and nonlinearity

    Get PDF
    We introduce a discrete linear lossy system with an embedded "hot spot" (HS), i.e., a site carrying linear gain and complex cubic nonlinearity. The system can be used to model an array of optical or plasmonic waveguides, where selective excitation of particular cores is possible. Localized modes pinned to the HS are constructed in an implicit analytical form, and their stability is investigated numerically. Stability regions for the modes are obtained in the parameter space of the linear gain and cubic gain/loss. An essential result is that the interaction of the unsaturated cubic gain and self-defocusing nonlinearity can produce stable modes, although they may be destabilized by finite amplitude perturbations. On the other hand, the interplay of the cubic loss and self-defocusing gives rise to a bistability.Comment: Phys. Rev. E (in press

    Anomalous kinetics of attractive A+B0A+B \to 0 reactions

    Full text link
    We investigate the kinetics of A+B0A+B \to 0 reaction with the local attractive interaction between opposite species in one spatial dimension. The attractive interaction leads to isotropic diffusions inside segregated single species domains, and accelerates the reactions of opposite species at the domain boundaries. At equal initial densities of AA and BB, we analytically and numerically show that the density of particles (ρ\rho), the size of domains (\ell), the distance between the closest neighbor of same species (AA\ell_{AA}), and the distance between adjacent opposite species (AB\ell_{AB}) scale in time as ρt1/3\rho \sim t^{-1/3}, AAt1/3\ell_{AA} \sim t^{1/3}, and ABt2/3\ell \sim \ell_{AB} \sim t^{2/3} respectively. These dynamical exponents form a new universality class distinguished from the class of uniformly driven systems of hard-core particles.Comment: 4 pages, 4 figure

    Excitation Induced Dephasing in Semiconductor Quantum Dots

    Full text link
    A quantum kinetic theory is used to compute excitation induced dephasing in semiconductor quantum dots due to the Coulomb interaction with a continuum of states, such as a quantum well or a wetting layer. It is shown that a frequency dependent broadening together with nonlinear resonance shifts are needed for a microscopic explanation of the excitation induced dephasing in such a system, and that excitation induced dephasing for a quantum-dot excitonic resonance is different from quantum-well and bulk excitons.Comment: 6 pages, 4 figures. Extensively revised text, two figures change

    Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity

    Get PDF
    We introduce a system with one or two amplified nonlinear sites ("hot spots", HSs) embedded into a two-dimensional linear lossy lattice. The system describes an array of evanescently coupled optical or plasmonic waveguides, with gain applied at selected HS cores. The subject of the analysis is discrete solitons pinned to the HSs. The shape of the localized modes is found in quasi-analytical and numerical forms, using a truncated lattice for the analytical consideration. Stability eigenvalues are computed numerically, and the results are supplemented by direct numerical simulations. In the case of self-focusing nonlinearity, the modes pinned to a single HS are stable or unstable when the nonlinearity includes the cubic loss or gain, respectively. If the nonlinearity is self-defocusing, the unsaturated cubic gain acting at the HS supports stable modes in a small parametric area, while weak cubic loss gives rise to a bistability of the discrete solitons. Symmetric and antisymmetric modes pinned to a symmetric set of two HSs are considered too.Comment: Philosophical Transactions of the Royal Society A, in press (a special issue on "Localized structures in dissipative media"

    Spinor Fields and Symmetries of the Spacetime

    Full text link
    In the background of a stationary black hole, the "conserved current" of a particular spinor field always approaches the null Killing vector on the horizon. What's more, when the black hole is asymptotically flat and when the coordinate system is asymptotically static, then the same current also approaches the time Killing vector at the spatial infinity. We test these results against various black hole solutions and no exception is found. The spinor field only needs to satisfy a very general and simple constraint.Comment: 19 page

    Modeling sequential annotations for sequence labeling with crowds

    Full text link
    Crowd sequential annotations can be an efficient and cost-effective way to build large datasets for sequence labeling. Different from tagging independent instances, for crowd sequential annotations the quality of label sequence relies on the expertise level of annotators in capturing internal dependencies for each token in the sequence. In this paper, we propose Modeling sequential annotation for sequence labeling with crowds (SA-SLC). First, a conditional probabilistic model is developed to jointly model sequential data and annotators' expertise, in which categorical distribution is introduced to estimate the reliability of each annotator in capturing local and non-local label dependency for sequential annotation. To accelerate the marginalization of the proposed model, a valid label sequence inference (VLSE) method is proposed to derive the valid ground-truth label sequences from crowd sequential annotations. VLSE derives possible ground-truth labels from the token-wise level and further prunes sub-paths in the forward inference for label sequence decoding. VLSE reduces the number of candidate label sequences and improves the quality of possible ground-truth label sequences. The experimental results on several sequence labeling tasks of Natural Language Processing show the effectiveness of the proposed model

    Duration modeling with semi-Markov Conditional Random Fields for keyphrase extraction

    Full text link
    Existing methods for keyphrase extraction need preprocessing to generate candidate phrase or post-processing to transform keyword into keyphrase. In this paper, we propose a novel approach called duration modeling with semi-Markov Conditional Random Fields (DM-SMCRFs) for keyphrase extraction. First of all, based on the property of semi-Markov chain, DM-SMCRFs can encode segment-level features and sequentially classify the phrase in the sentence as keyphrase or non-keyphrase. Second, by assuming the independence between state transition and state duration, DM-SMCRFs model the distribution of duration (length) of keyphrases to further explore state duration information, which can help identify the size of keyphrase. Based on the convexity of parametric duration feature derived from duration distribution, a constrained Viterbi algorithm is derived to improve the performance of decoding in DM-SMCRFs. We thoroughly evaluate the performance of DM-SMCRFs on the datasets from various domains. The experimental results demonstrate the effectiveness of proposed model
    corecore