7,974 research outputs found

    Innovative Mobile Technologies for Asset Tracking

    Get PDF

    Surface terms, Asymptotics and Thermodynamics of the Holst Action

    Full text link
    We consider a first order formalism for general relativity derived from the Holst action. This action is obtained from the standard Palatini-Hilbert form by adding a topological-like term and can be taken as the starting point for loop quantum gravity and spin foam models. The equations of motion derived from the Holst action are, nevertheless, the same as in the Palatini formulation. Here we study the form of the surface terms of the action for general boundaries as well as the symplectic current in the covariant formulation of the theory. Furthermore, we analyze the behavior of the surface terms in asymptotically flat space-times. We show that the contribution to the symplectic structure from the Holst term vanishes and one obtains the same asymptotic expressions as in the Palatini action. It then follows that the asymptotic Poincare symmetries and conserved quantities such as energy, linear momentum and relativistic angular momentum found here are equivalent to those obtained from the standard Arnowitt, Deser and Misner formalism. Finally, we consider the Euclidean approach to black hole thermodynamics and show that the on-shell Holst action, when evaluated on some static solutions containing horizons, yields the standard thermodynamical relations.Comment: 16 page

    The Big Bang as a Phase Transition

    Full text link
    We study a five-dimensional cosmological model, which suggests that the universe bagan as a discontinuity in a (Higgs-type) scalar field, or alternatively as a conventional four-dimensional phase transition.Comment: 10 pages, 2 figures; typo corrected in equation (18); 1 reference added; version to appear in International Journal of Modern Physics

    Isolated horizons in higher-dimensional Einstein-Gauss-Bonnet gravity

    Full text link
    The isolated horizon framework was introduced in order to provide a local description of black holes that are in equilibrium with their (possibly dynamic) environment. Over the past several years, the framework has been extended to include matter fields (dilaton, Yang-Mills etc) in D=4 dimensions and cosmological constant in D3D\geq3 dimensions. In this article we present a further extension of the framework that includes black holes in higher-dimensional Einstein-Gauss-Bonnet (EGB) gravity. In particular, we construct a covariant phase space for EGB gravity in arbitrary dimensions which allows us to derive the first law. We find that the entropy of a weakly isolated and non-rotating horizon is given by S=(1/4GD)SD2ϵ~(1+2αR)\mathcal{S}=(1/4G_{D})\oint_{S^{D-2}}\bm{\tilde{\epsilon}}(1+2\alpha\mathcal{R}). In this expression SD2S^{D-2} is the (D2)(D-2)-dimensional cross section of the horizon with area form ϵ~\bm{\tilde{\epsilon}} and Ricci scalar R\mathcal{R}, GDG_{D} is the DD-dimensional Newton constant and α\alpha is the Gauss-Bonnet parameter. This expression for the horizon entropy is in agreement with those predicted by the Euclidean and Noether charge methods. Thus we extend the isolated horizon framework beyond Einstein gravity.Comment: 18 pages; 1 figure; v2: 19 pages; 2 references added; v3: 19 pages; minor corrections; 1 reference added; to appear in Classical and Quantum Gravit

    Fundamental properties and applications of quasi-local black hole horizons

    Full text link
    The traditional description of black holes in terms of event horizons is inadequate for many physical applications, especially when studying black holes in non-stationary spacetimes. In these cases, it is often more useful to use the quasi-local notions of trapped and marginally trapped surfaces, which lead naturally to the framework of trapping, isolated, and dynamical horizons. This framework allows us to analyze diverse facets of black holes in a unified manner and to significantly generalize several results in black hole physics. It also leads to a number of applications in mathematical general relativity, numerical relativity, astrophysics, and quantum gravity. In this review, I will discuss the basic ideas and recent developments in this framework, and summarize some of its applications with an emphasis on numerical relativity.Comment: 14 pages, 2 figures. Based on a talk presented at the 18th International Conference on General Relativity and Gravitation, 8-13 July 2007, Sydney, Australi

    Barbero-Immirzi parameter, manifold invariants and Euclidean path integrals

    Full text link
    The Barbero-Immirzi parameter γ\gamma appears in the \emph{real} connection formulation of gravity in terms of the Ashtekar variables, and gives rise to a one-parameter quantization ambiguity in Loop Quantum Gravity. In this paper we investigate the conditions under which γ\gamma will have physical effects in Euclidean Quantum Gravity. This is done by constructing a well-defined Euclidean path integral for the Holst action with non-zero cosmological constant on a manifold with boundary. We find that two general conditions must be satisfied by the spacetime manifold in order for the Holst action and its surface integral to be non-zero: (i) the metric has to be non-diagonalizable; (ii) the Pontryagin number of the manifold has to be non-zero. The latter is a strong topological condition, and rules out many of the known solutions to the Einstein field equations. This result leads us to evaluate the on-shell first-order Holst action and corresponding Euclidean partition function on the Taub-NUT-ADS solution. We find that γ\gamma shows up as a finite rotation of the on-shell partition function which corresponds to shifts in the energy and entropy of the NUT charge. In an appendix we also evaluate the Holst action on the Taub-NUT and Taub-bolt solutions in flat spacetime and find that in that case as well γ\gamma shows up in the energy and entropy of the NUT and bolt charges. We also present an example whereby the Euler characteristic of the manifold has a non-trivial effect on black-hole mergers.Comment: 18 pages; v2: references added; to appear in Classical and Quantum Gravity; v3: typos corrected; minor revisions to match published versio

    On Bouncing Brane-Worlds, S-branes and Branonium Cosmology

    Full text link
    We present several higher-dimensional spacetimes for which observers living on 3-branes experience an induced metric which bounces. The classes of examples include boundary branes on generalised S-brane backgrounds and probe branes in D-brane/anti D-brane systems. The bounces we consider normally would be expected to require an energy density which violates the weak energy condition, and for our co-dimension one examples this is attributable to bulk curvature terms in the effective Friedmann equation. We examine the features of the acceleration which provides the bounce, including in some cases the existence of positive acceleration without event horizons, and we give a geometrical interpretation for it. We discuss the stability of the solutions from the point of view of both the brane and the bulk. Some of our examples appear to be stable from the bulk point of view, suggesting the possible existence of stable bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde
    corecore