19 research outputs found

    Liposome-based DNA carriers may induce cellular stress response and change gene expression pattern in transfected cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During functional studies on the rat stress-inducible <it>Hspa1b </it>(<it>hsp70.1</it>) gene we noticed that some liposome-based DNA carriers, which are used for transfection, induce its promoter activity. This observation concerned commercial liposome formulations (LA), Lipofectin and Lipofectamine 2000. This work was aimed to understand better the mechanism of this phenomenon and its potential biological and practical consequences.</p> <p>Results</p> <p>We found that a reporter gene driven by <it>Hspa1b </it>promoter is activated both in the case of transient transfections and in the stably transfected cells treated with LA. Using several deletion clones containing different fragments of <it>Hspa1b </it>promoter, we found that the regulatory elements responsible for most efficient LA-driven inducibility were located between nucleotides -269 and +85, relative to the transcription start site. Further studies showed that the induction mechanism was independent of the classical HSE-HSF interaction that is responsible for gene activation during heat stress. Using DNA microarrays we also detected significant activation of the endogenous <it>Hspa1b </it>gene in cells treated with Lipofectamine 2000. Several other stress genes were also induced, along with numerous genes involved in cellular metabolism, cell cycle control and pro-apoptotic pathways.</p> <p>Conclusions</p> <p>Our observations suggest that i) some cationic liposomes may not be suitable for functional studies on <it>hsp </it>promoters, ii) lipofection may cause unintended changes in global gene expression in the transfected cells.</p

    Active heat shock transcription factor 1 supports migration of the melanoma cells via vinculin down-regulation

    Get PDF
    AbstractHeat shock transcription factor 1 (HSF1), the major regulator of stress response, is frequently activated in cancer and has an apparent role in malignant transformation. Here we analyzed the influence of the over-expression of a constitutively active transcriptionally-competent HSF1 mutant form on phenotypes of mouse and human melanoma cells. We observed that the expression of active HSF1 supported anchorage-independent growth in vitro, and metastatic spread in the animal model in vivo, although the proliferation rate of cancer cells was not affected. Furthermore, active HSF1 enhanced cell motility, reduced the adherence of cells to a fibronectin-coated surface, and affected the actin cytoskeleton. We found that although the expression of active HSF1 did not affect levels of epithelial-to-mesenchymal transition markers, it caused transcriptional down-regulation of vinculin, protein involved in cell motility, and adherence. Functional HSF1-binding sites were found in mouse and human Vcl/VCL genes, indicating a direct role of HSF1 in the regulation of this gene. An apparent association between HSF1-induced down-regulation of vinculin, increased motility, and a reduced adherence of cells suggests a possible mechanism of HSF1-mediated enhancement of the metastatic potential of cancer cells

    Heat shock factor 1 (Hsf1) cooperates with estrogen receptor α (erα) in the regulation of estrogen action in breast cancer cells

    Get PDF
    Heat shock factor 1 (HSF1), a key regulator of transcriptional responses to proteotoxic stress, was linked to estrogen (E2) signaling through estrogen receptor α (ERα). We found that an HSF1 deficiency may decrease ERα level, attenuate the mitogenic action of E2, counteract E2-stimulated cell scattering, and reduce adhesion to collagens and cell motility in ER-positive breast cancer cells. The stimulatory effect of E2 on the transcriptome is largely weaker in HSF1-deficient cells, in part due to the higher basal expression of E2-dependent genes, which correlates with the enhanced binding of unliganded ERα to chromatin in such cells. HSF1 and ERα can cooperate directly in E2-stimulated regulation of transcription, and HSF1 potentiates the action of ERα through a mechanism involving chromatin reorganization. Furthermore, HSF1 deficiency may increase the sensitivity to hormonal therapy (4-hydroxytamoxifen) or CDK4/6 inhibitors (palbociclib). Analyses of data from The Cancer Genome Atlas database indicate that HSF1 increases the transcriptome disparity in ER-positive breast cancer and can enhance the genomic action of ERα. Moreover, only in ER-positive cancers an elevated HSF1 level is associated with metastatic disease.publishedVersio

    Pleiotropic Role of HSF1 in Neoplastic Transformation

    No full text

    The GC-box is critical for high level expression of the testis-specific Hsp70.2/Hst70 gene

    No full text
    The Hsp70.2/Hst70 gene, which belongs to the 70 kDa heat-shock protein (HSP) family, is expressed specifically in primary spermatocytes and spermatids. The regulatory elements required for a high level of testis-specific expression of the gene are placed between the two major transcription start sites T1 and T2 (approximately 350 and 115 bp upstream of the starting ATG codon). Here we have shown that sequences proximal to the exon1/intron splicing site in the 5' untranslated region of the Hsp70.2/Hst70 gene, which include a highly conserved element called box B, are required for efficient expression of the chloramphenicol acetyltransferase reporter gene in testes of transgenic mice. However, in spite of the drastically reduced overall activity, the stage-specific expression pattern of the transgene was preserved after removal of these sequences. We have also shown that GC-box located downstream of the box B (approximately 210 bp upstream of the starting ATG codon) is indispensable for efficient expression of the Hsp70.2/Hst70 gene promoter in spermatogenic cells. The GC-box specifically binds proteins present in nuclear extracts from testes (putatively Sp1-like factors). A change in the pattern of such GC-box-interacting factors corresponds to activation of the Hsp70.2/Hst70 gene, confirming the importance of this regulatory element

    Circulating HPV16 DNA in Blood Plasma as Prognosticator and Early Indicator of Cancer Recurrence in Radio-Chemotherapy for Anal Cancer

    No full text
    Background: Implementation of anal squamous cell carcinoma (ASCC) treatment modifications requires reliable patient risk stratification. The circulating tumor–related human papillomavirus type 16 (ctHPV16) may play a role in predicting survival or assessing treatment response. Methods: The study included 62 ASCC patients treated with chemoradiotherapy. A threshold of 2.5 was used to determine the maximum standardized uptake value (SUVmax). The ctHPV16 viral load (VL) was quantified by qPCR. Results: In the multivariate Cox analysis, lower SUVmax (p = 0.047) and ctHPV16–positive (p = 0.054) proved to be independent prognostic factors for favorable overall survival (OS). In the subgroup with the higher SUVmax, ctHPV16 and nodal (N) status were independent prognostic factors with p = 0.022 for ctHPV16 and p = 0.053 for N. The best survival rate (95%) presented ctHPV16–positive/N–negative patients. High ctHPV16 VL tended to be slightly specific for patients younger than 63 years (p = 0.152). The decrease in ctHPV16 VL to undetectable level after the end of treatment correlated with the overall clinical response. Conclusions: A prognostic stratification by SUVmax, ctHPV16 and N–positive status allows consideration of more aggressive treatment in high–risk patients (those with high SUVmax, ctHPV16–negative, and N–positive) or de–intensification of therapy in low–risk patients (those with low SUVmax, ctHPV16–positive and N–negative). However, prospective clinical trials on a large group are needed

    Inhibition of the Heat Shock Protein A (HSPA) Family Potentiates the Anticancer Effects of Manumycin A

    No full text
    Manumycin A (MA) is a well-tolerated natural antibiotic showing pleiotropic anticancer effects in various preclinical in vitro and in vivo models. Anticancer drugs may themselves act as stressors to induce the cellular adaptive mechanism that can minimize their cytotoxicity. Heat shock proteins (HSPs) as cytoprotective factors can counteract the deleterious effects of various stressful stimuli. In this study, we examined whether the anticancer effects of MA can be counteracted by the mechanism related to HSPs belonging to the HSPA (HSP70) family. We found that MA caused cell type-specific alterations in the levels of HSPAs. These changes included concomitant upregulation of the stress-inducible (HSPA1 and HSPA6) and downregulation of the non-stress-inducible (HSPA2) paralogs. However, neither HSPA1 nor HSPA2 were necessary to provide protection against MA in lung cancer cells. Conversely, the simultaneous repression of several HSPA paralogs using pan-HSPA inhibitors (VER-155008 or JG-98) sensitized cancer cells to MA. We also observed that genetic ablation of the heat shock factor 1 (HSF1) transcription factor, a main transactivator of HSPAs expression, sensitized MCF7 cells to MA treatment. Our study reveals that inhibition of HSF1-mediated heat shock response (HSR) can improve the anticancer effect of MA. These observations suggest that targeting the HSR- or HSPA-mediated adaptive mechanisms may be a promising strategy for further preclinical developments
    corecore