256 research outputs found

    Lempel-Ziv Complexity Analysis of Local Field Potentials in Different Vigilance States with Different Coarse-Graining Techniques

    Full text link
    Analysis of electrophysiological signals recorded from the brain with Lempel-Ziv (LZ) complexity, a measure based on coarse-graining of the signal, can provide valuable insights into understanding brain activity. LZ complexity of local field potential signals recorded from the neocortex of 11 adult male Wistar-Kyoto rats in different vigilance states - waking, non-rapid-eye movement (NREM) and REM sleep - was estimated with different coarse-graining techniques (median, LZCm, and k-means, LZCkm). Furthermore, surrogate data were used to test the hypothesis that LZ complexity results reveal effects accounted for by temporal structure of the signal, rather than merely its frequency content. LZ complexity values were significantly lower in NREM sleep as compared to waking and REM sleep, for both real and surrogate signals. LZCkm and LZCm values were similar, although in NREM sleep the values deviated in some epochs, where signals also differed significantly in terms of temporal structure and spectral content. Thus, the interpretation of LZ complexity results should take into account the specific algorithm used to coarse-grain the signal. Moreover, the occurrence of high amplitude slow waves during NREM sleep determines LZ complexity to a large extent, but characteristics such as the temporal sequence of slow waves or cross-frequency interactions might also play a role. © Springer International Publishing Switzerland 2014

    The Song Must Go On: Resilience of the Songbird Vocal Motor Pathway

    Get PDF
    Stereotyped sequences of neural activity underlie learned vocal behavior in songbirds; principle neurons in the cortical motor nucleus HVC fire in stereotyped sequences with millisecond precision across multiple renditions of a song. The geometry of neural connections underlying these sequences is not known in detail though feed-forward chains are commonly assumed in theoretical models of sequential neural activity. In songbirds, a well-defined cortical-thalamic motor circuit exists but little is known the fine-grain structure of connections within each song nucleus. To examine whether the structure of song is critically dependent on long-range connections within HVC, we bilaterally transected the nucleus along the anterior-posterior axis in normal-hearing and deafened birds. The disruption leads to a slowing of song as well as an increase in acoustic variability. These effects are reversed on a time-scale of days even in deafened birds or in birds that are prevented from singing post-transection. The stereotyped song of zebra finches includes acoustic details that span from milliseconds to seconds–one of the most precise learned behaviors in the animal kingdom. This detailed motor pattern is resilient to disruption of connections at the cortical level, and the details of song variability and duration are maintained by offline homeostasis of the song circuit

    Morning and Evening-Type Differences in Slow Waves during NREM Sleep Reveal Both Trait and State-Dependent Phenotypes

    Get PDF
    Brain recovery after prolonged wakefulness is characterized by increased density, amplitude and slope of slow waves (SW, <4 Hz) during non-rapid eye movement (NREM) sleep. These SW comprise a negative phase, during which cortical neurons are mostly silent, and a positive phase, in which most neurons fire intensively. Previous work showed, using EEG spectral analysis as an index of cortical synchrony, that Morning-types (M-types) present faster dynamics of sleep pressure than Evening-types (E-types). We thus hypothesized that single SW properties will also show larger changes in M-types than in E-types in response to increased sleep pressure. SW density (number per minute) and characteristics (amplitude, slope between negative and positive peaks, frequency and duration of negative and positive phases) were compared between chronotypes for a baseline sleep episode (BL) and for recovery sleep (REC) after two nights of sleep fragmentation. While SW density did not differ between chronotypes, M-types showed higher SW amplitude and steeper slope than E-types, especially during REC. SW properties were also averaged for 3 NREM sleep periods selected for their decreasing level of sleep pressure (first cycle of REC [REC1], first cycle of BL [BL1] and fourth cycle of BL [BL4]). Slope was significantly steeper in M-types than in E-types in REC1 and BL1. SW frequency was consistently higher and duration of positive and negative phases constantly shorter in M-types than in E-types. Our data reveal that specific properties of cortical synchrony during sleep differ between M-types and E-types, although chronotypes show a similar capacity to generate SW. These differences may involve 1) stable trait characteristics independent of sleep pressure (i.e., frequency and durations) likely linked to the length of silent and burst-firing phases of individual neurons, and 2) specific responses to increased sleep pressure (i.e., slope and amplitude) expected to depend on the synchrony between neurons

    Analysis of the Temporal Organization of Sleep Spindles in the Human Sleep EEG Using a Phenomenological Modeling Approach

    Get PDF
    The sleep electroencephalogram (EEG) is characterized by typical oscillatory patterns such as sleep spindles and slow waves. Recently, we proposed a method to detect and analyze these patterns using linear autoregressive models for short (≈ 1 s) data segments. We analyzed the temporal organization of sleep spindles and discuss to what extent the observed interevent intervals correspond to properties of stationary stochastic processes and whether additional slow processes, such as slow oscillations, have to be assumed. We have found evidence for such an additional slow process, most pronounced in sleep stage 2

    Activity of cortical and thalamic neurons during the slow (<1 Hz) rhythm in the mouse in vivo

    Get PDF
    During NREM sleep and under certain types of anaesthesia, the mammalian brain exhibits a distinctive slow (<1 Hz) rhythm. At the cellular level, this rhythm correlates with so-called UP and DOWN membrane potential states. In the neocortex, these UP and DOWN states correspond to periods of intense network activity and widespread neuronal silence, respectively, whereas in thalamocortical (TC) neurons, UP/DOWN states take on a more stereotypical oscillatory form, with UP states commencing with a low-threshold Ca2+ potential (LTCP). Whilst these properties are now well recognised for neurons in cats and rats, whether or not they are also shared by neurons in the mouse is not fully known. To address this issue, we obtained intracellular recordings from neocortical and TC neurons during the slow (<1 Hz) rhythm in anaesthetised mice. We show that UP/DOWN states in this species are broadly similar to those observed in cats and rats, with UP states in neocortical neurons being characterised by a combination of action potential output and intense synaptic activity, whereas UP states in TC neurons always commence with an LTCP. In some neocortical and TC neurons, we observed ‘spikelets’ during UP states, supporting the possible presence of electrical coupling. Lastly, we show that, upon tonic depolarisation, UP/DOWN states in TC neurons are replaced by rhythmic high-threshold bursting at ~5 Hz, as predicted by in vitro studies. Thus, UP/DOWN state generation appears to be an elemental and conserved process in mammals that underlies the slow (<1 Hz) rhythm in several species, including humans

    Cortical Plasticity Induced by Transcranial Magnetic Stimulation during Wakefulness Affects Electroencephalogram Activity during Sleep

    Get PDF
    BACKGROUND:Sleep electroencephalogram (EEG) brain oscillations in the low-frequency range show local signs of homeostatic regulation after learning. Such increases and decreases of slow wave activity are limited to the cortical regions involved in specific task performance during wakefulness. Here, we test the hypothesis that reorganization of motor cortex produced by long-term potentiation (LTP) affects EEG activity of this brain area during subsequent sleep. METHODOLOGY/PRINCIPAL FINDINGS:By pairing median nerve stimulation with transcranial magnetic stimulation over the contralateral motor cortex, one can potentiate the motor output, which is presumed to reflect plasticity of the neural circuitry. This paired associative stimulation increases M1 cortical excitability at interstimulus intervals of 25 ms. We compared the scalp distribution of sleep EEG power following paired associative stimulation at 25 ms to that following a control paradigm with 50 ms intervals. It is shown that the experimental manipulation by paired associative stimulation at 25 ms induces a 48% increase in amplitude of motor evoked potentials. This LTP-like potentiation, induced during waking, affects delta and theta EEG power in both REM and non-REM sleep, measured during the following night. Slow-wave activity increases in some frontal and prefrontal derivations and decreases at sites neighboring and contralateral to the stimulated motor cortex. The magnitude of increased amplitudes of motor evoked potentials by the paired associative stimulation at 25 ms predicts enhancements of slow-wave activity in prefrontal regions. CONCLUSIONS/SIGNIFICANCE:An LTP-like paradigm, presumably inducing increased synaptic strength, leads to changes in local sleep regulation, as indexed by EEG slow-wave activity. Enhancement and depression of slow-wave activity are interpreted in terms of a simultaneous activation of both excitatory and inhibitory circuits consequent to the paired associative stimulation at 25 ms

    Does Sleep Really Influence Face Recognition Memory?

    Get PDF
    Mounting evidence implicates sleep in the consolidation of various kinds of memories. We investigated the effect of sleep on memory for face identity, a declarative form of memory that is indispensable for nearly all social interaction. In the acquisition phase, observers viewed faces that they were required to remember over a variable retention period (0–36 hours). In the test phase, observers viewed intermixed old and new faces and judged seeing each before. Participants were classified according to acquisition and test times into seven groups. Memory strength (d′) and response bias (c) were evaluated. Substantial time spent awake (12 hours or more) during the retention period impaired face recognition memory evaluated at test, whereas sleep per se during the retention period did little to enhance the memory. Wakefulness during retention also led to a tightening of the decision criterion. Our findings suggest that sleep passively and transiently shelters face recognition memory from waking interference (exposure) but does not actively aid in its long-term consolidation

    Change in hippocampal theta oscillation associated with multiple lever presses in a bimanual two-lever choice task for robot control in rats.

    Get PDF
    Hippocampal theta oscillations have been implicated in working memory and attentional process, which might be useful for the brain-machine interface (BMI). To further elucidate the properties of the hippocampal theta oscillations that can be used in BMI, we investigated hippocampal theta oscillations during a two-lever choice task. During the task body-restrained rats were trained with a food reward to move an e-puck robot towards them by pressing the correct lever, ipsilateral to the robot several times, using the ipsilateral forelimb. The robot carried food and moved along a semicircle track set in front of the rat. We demonstrated that the power of hippocampal theta oscillations gradually increased during a 6-s preparatory period before the start of multiple lever pressing, irrespective of whether the correct lever choice or forelimb side were used. In addition, there was a significant difference in the theta power after the first choice, between correct and incorrect trials. During the correct trials the theta power was highest during the first lever-releasing period, whereas in the incorrect trials it occurred during the second correct lever-pressing period. We also analyzed the hippocampal theta oscillations at the termination of multiple lever pressing during the correct trials. Irrespective of whether the correct forelimb side was used, the power of hippocampal theta oscillations gradually decreased with the termination of multiple lever pressing. The frequency of theta oscillation also demonstrated an increase and decrease, before and after multiple lever pressing, respectively. There was a transient increase in frequency after the first lever press during the incorrect trials, while no such increase was observed during the correct trials. These results suggested that hippocampal theta oscillations reflect some aspects of preparatory and cognitive neural activities during the robot controlling task, which could be used for BMI
    corecore