15 research outputs found

    Implantable devices including fixed tissues

    Get PDF
    Disclosed are implantable tissues including one or more enzyme inhibitors bound in the tissues, bioprostheses including the tissue, and methods for incorporating enzyme inhibitors in implantable tissues. Disclosed tissue can exhibit increased resistance to degradation, and specifically, degradation due to enzyme activity following implantation. Moreover, the disclosed methods can lead to increased levels of beneficial components bound in implantable tissues following a fixation/stabilization protocol. Increased levels of beneficial agents in an implantable tissue can further improve the implantable tissues and bioprostheses incorporating the tissues through improved mechanical characteristics and longer lifespan

    Elastin Stabilization of Connective Tissue

    Get PDF
    A method and product are provided for the treatment of connective tissue weakened due to destruction of tissue architecture, and in particular due to elastin degradation. The treatment agents employ certain unique properties of phenolic compounds to develop a protocol for reducing elastin degradation, such as that occurring during aneurysm formation in vasculature. According to the invention, elastin can be stabilized in vivo and destruction of connective tissue, such as that leading to life-threatening aneurysms in vasculature, can be tempered or halted all together. The treatment agents can be delivered or administered acutely or chronically according to various delivery methods, including sustained release methods incorporating perivascular or endovascular patches, use of microsphere carriers, hydrogels, or osmotic pumps

    Elastin stabilization of connective tissue

    Get PDF
    A method and product are provided for the treatment of connective tissue weakened due to destruction of tissue architecture, and in particular due to elastin degradation. The treatment agents employ certain unique properties of phenolic compounds to develop a protocol for reducing elastin degradation, such as that occurring during aneurysm formation in vasculature. According to the invention, elastin can be stabilized in vivo and destruction of connective tissue, such as that leading to life-threatening aneurysms in vasculature, can be tempered or halted all together. The treatment agents can be delivered or administered acutely or chronically according to various delivery methods, including sustained release methods incorporating perivascular or endovascular patches, use of microsphere carriers, hydrogels, or osmotic pumps

    Elastin stabilization of connective tissue

    Get PDF
    A method and product are provided for the treatment of connective tissue weakened due to destruction of tissue architecture, and in particular due to elastin degradation. The treatment agents employ certain unique properties of phenolic compounds to develop a protocol for reducing elastin degradation, such as that occurring during aneurysm formation in vasculature. According to the invention, elastin can be stabilized in vivo and destruction of connective tissue, such as that leading to life-threatening aneurysms in vasculature, can be tempered or halted all together. The treatment agents can be delivered or administered acutely or chronically according to various delivery methods, including sustained release methods incorporating perivascular or endovascular patches, use of microsphere carriers, hydrogels, or osmotic pumps

    Increased TGFβ1 and SMAD3 Contribute to Age-Related Aortic Valve Calcification

    Get PDF
    AimsCalcific aortic valve disease (CAVD) is a progressive heart disease that is particularly prevalent in elderly patients. The current treatment of CAVD is surgical valve replacement, but this is not a permanent solution, and it is very challenging for elderly patients. Thus, a pharmacological intervention for CAVD may be beneficial. In this study, we intended to rescue aortic valve (AV) calcification through inhibition of TGFβ1 and SMAD3 signaling pathways.Methods and ResultsThe klotho gene, which was discovered as an aging-suppressor gene, has been observed to play a crucial role in AV calcification. The klotho knockout (Kl–/–) mice have shorter life span (8–12 weeks) and develop severe AV calcification. Here, we showed that increased TGFβ1 and TGFβ-dependent SMAD3 signaling were associated with AV calcification in Kl–/– mice. Next, we generated Tgfb1- and Smad3-haploinsufficient Kl–/– mice to determine the contribution of TGFβ1 and SMAD3 to the AV calcification in Kl–/– mice. The histological and morphometric evaluation suggested a significant reduction of AV calcification in Kl–/–; Tgfb1± mice compared to Kl–/– mice. Smad3 heterozygous deletion was observed to be more potent in reducing AV calcification in Kl–/– mice compared to the Kl–/–; Tgfb1± mice. We observed significant inhibition of Tgfb1, Pai1, Bmp2, Alk2, Spp1, and Runx2 mRNA expression in Kl–/–; Tgfb1± and Kl–/–; Smad3± mice compared to Kl–/– mice. Western blot analysis confirmed that the inhibition of TGFβ canonical and non-canonical signaling pathways were associated with the rescue of AV calcification of both Kl–/–; Tgfb1± and Kl–/–; Smad3± mice.ConclusionOverall, inhibition of the TGFβ1-dependent SMAD3 signaling pathway significantly blocks the development of AV calcification in Kl–/– mice. This information is useful in understanding the signaling mechanisms involved in CAVD

    Nitric Oxide Stimulates Matrix Synthesis and Deposition by Adult Human Aortic Smooth Muscle Cells Within Three-Dimensional Cocultures

    No full text
    © Copyright 2015, Mary Ann Liebert, Inc. 2015. Vascular diseases are characterized by the over-proliferation and migration of aortic smooth muscle cells (SMCs), and degradation of extracellular matrix (ECM) within the vessel wall, leading to compromise in cell-cell and cell-matrix signaling pathways. Tissue engineering approaches to regulate SMC over-proliferation and enhance healthy ECM synthesis showed promise, but resulted in low crosslinking efficiency. Here, we report the benefits of exogenous nitric oxide (NO) cues, delivered from S-Nitrosoglutathione (GSNO), to cell proliferation and matrix deposition by adult human aortic SMCs (HA-SMCs) within three-dimensional (3D) biomimetic cocultures. A coculture platform with two adjacent, permeable 3D culture chambers was developed to enable paracrine signaling between vascular cells. HA-SMCs were cultured in these chambers within collagen hydrogels, either alone or in the presence of human aortic endothelial cells (HA-ECs) cocultures, and exogenously supplemented with varying GSNO dosages (0-100 nM) for 21 days. Results showed that EC cocultures stimulated SMC proliferation within GSNO-free cultures. With increasing GSNO concentration, HA-SMC proliferation decreased in the presence or absence of EC cocultures, while HA-EC proliferation increased. GSNO (100 nM) significantly enhanced the protein amounts synthesized by HA-SMCs, in the presence or absence of EC cocultures, while lower dosages (1-10 nM) offered marginal benefits. Multi-fold increases in the synthesis and deposition of elastin, glycosaminoglycans, hyaluronic acid, and lysyl oxidase crosslinking enzyme (LOX) were noted at higher GSNO dosages, and coculturing with ECs significantly furthered these trends. Similar increases in TIMP-1 and MMP-9 levels were noted within cocultures with increasing GSNO dosages. Such increases in matrix synthesis correlated with NO-stimulated increases in endothelial nitric oxide synthase (eNOS) and inducible nitric oxide synthase (iNOS) expression within EC and SMC cultures, respectively. Results attest to the benefits of delivering NO cues to suppress SMC proliferation and promote robust ECM synthesis and deposition by adult human SMCs, with significant applications in tissue engineering, biomaterial scaffold development, and drug delivery
    corecore