5 research outputs found

    Verification of the presence of superabsorbent polymers (SAP) in fresh concrete : results of an interlaboratory study of RILEM TC 260-RSC

    Get PDF
    New methods are proposed for the verification of the presence of superabsorbent polymers (SAP) in freshly mixed concrete and estimation of SAP quantity. The methods are in general based on flushing concrete with excess water. They allow separating the light, water-sorbed hydrogel particles from the mineral components in the fresh concrete and making these particles available for further tests. Two types of tests are proposed: Test 1 serves for a visual verification of the presence of SAP (qualitative test), while Test 2 enables quantifying the mass of the collected SAP as a proxy of their concentration in concrete (quantitative test). Different procedures are proposed for these two test methods and their performance is evaluated. The testing procedures were scrutinized in an interlaboratory study carried out by 14 participants from 12 countries. All participating groups detected the presence of SAP in the mix using the qualitative procedures (Test 1). Based on this outcome, we suggest that this method should be applied in the field. In contrast, while most participants obtained reasonably reliable results with the quantification procedure of Test 2, some participants reported large errors. Therefore, the quantification method needs to be further refined, starting from the experience gained in this interlaboratory study.Open Access funding provided by Lib4RI.http://link.springer.com/journal/11527Civil EngineeringSDG-09: Industry, innovation and infrastructur

    Testing superabsorbent polymer (SAP) sorption properties prior to implementation in concrete: results of a RILEM Round-Robin Test

    Get PDF
    This article presents the results of a round-robin test performed by 13 international research groups in the framework of the activities of the RILEM Technical Committee 260 RSC "Recommendations for use of superabsorbent polymers in concrete construction''. Two commercially available superabsorbent polymers (SAP) with different chemical compositions and gradings were tested in terms of their kinetics of absorption in different media; demineralized water, cement filtrate solution with a particular cement distributed to every participant and a local cement chosen by the participant. Two absorption test methods were considered; the tea-bag method and the filtration method. The absorption capacity was evaluated as a function of time. The results showed correspondence in behaviour of the SAPs among all participants, but also between the two test methods, even though high scatter was observed at early minutes of testing after immersion. The tea-bag method proved to be more practical in terms of time dependent study, whereby the filtration method showed less variation in the absorption capacity after 24 h. However, absorption followed by intrinsic, ionmediated desorption of a specific SAP sample in the course of time was not detected by the filtration method. This SAP-specific characteristic was only displayed by the tea-bag method. This demonstrates the practical applicability of both test methods, each one having their own strengths and weaknesses at distinct testing times

    Durability and Sustainability of Concrete Structures (DSCS-2018)

    No full text
    Modern construction is unthinkable without concrete, the world production and consumption of which is about 10 billion m3 per year. Given the steady growth of the world’s population by 2050, it is expected to double this volume, which will undoubtedly be significantly affected on energy consumption and increase global CO2 emissions. Concrete is perhaps the most universal building material since the beginning and development of civilization. It is sufficient to recall the Great Wall of China, the palaces and temples of Ancient India, the pyramids of Ancient Egypt, the unique buildings of Romans, made with the use of lime-pozzolanic binders. Universality of concrete is defined by simplicity and convenience of its production, rather low cost, structural integrity and homogeneity, durability and a long service life under various aggressive environments. However, the concrete image is sometimes not favorable. It is associated with greater labor intensity of construction works and dismantlement, massive structures, a large impact on the environment in connection with the s consumption of not renewable natural resources. The same perception is greatly facilitated by the fact that, according to Gigaton Throwdown Initiative, “the cement industry is responsible for about 5 to 7% of total CO2 emissions, or 2.1 Gt per year.” Indeed, when producing cement clinker about 0.9 t CO2 / t clinker are produced. Taking into account the annual increase in the production and use of Portland-based cement (more than 4.1 million tons per year) that is the main binder used in the production of concrete, this fact poses a significant threat to humanity as a whole. According to the Intergovernmental Panel on Climate Change (IPCC), actions are necessary to reduce carbon dioxide emissions because in about 30 years CO2 concentrations is expected to reach 450 ppm – a dangerous point above which irreversible climate change will occur on our planet. Since concrete will remain the main building material in the future, it is expected that if new ways and mechanisms to reduce the environmental burden by at least 50% will be not found, it is not possible to maintain the existing level of impact. This problem is so deep and serious that there is hardly a single way to solve it. There is a need for an integrated approach, several complementary activities that provide some synergy. Until recently, the main efforts were aimed at improving technological processes and reducing the consumption of clinker through the production of blended cements, as well as the creation of new types of binders. Active search for alternative binders has led to the development of sulfoaluminate-based cements; alkali-activated materials and geopolymers (slag, fly ash, metakaolin, etc.), efficient and fairly water-resistant magnesia cements; phosphate cements (ammonium phosphate, silicate phosphate, magnesium phosphate etc.), cements with calcium halogen-aluminate and the so called low water demand binders. With the advent of high-performance concretes and new technologies, the possibility of a radical increase of the cement factor in conventional concrete due to the use of high performance superplasticizers and other chemical admixtures, dramatically reducing the water consumption of the concrete mixture; active mineral additives such as micro silica, metakaolin, fly ash, finely ground granulated slag, etc., as well as a variety of inert fillers that can improve the functionality of concrete mixtures, such as fine limestone. Strictly speaking, “pozzolanic effect” and “filler effect” are easily combined and provide a certain synergy. The potential for reducing cement consumption in concrete production is still undervalued. This is due to certain fears of decreasing the corrosion resistance of concrete and durability of reinforced concrete structures, since the great bulk of the existing standards is prescriptive and sets the minimum cement content in concrete under specific operating conditions. Reinforced concrete structures of buildings and constructions, as a rule, initially, shall have the design strength and sufficiently long service life because their construction often requires a significant investment. The durability of these structures, however, is determined by different ageing processes and the influence of external actions, so their life will be limited. As a result, many structures need to be repaired or even replaced in fairly short time periods, resulting in additional costs and environmental impacts. Therefore, there is a need to improve the design principles of structures taking into account the parameters of durability and thus achieving a sufficiently long service life. Development of the concept of design of structures based on their life cycle, “environmental design”, including a holistic approach that optimizes material and energy resources in the context of operating costs, allow us to completely revise our ideas about structural concrete construction. It should be noted that many recent developments in the field of life cycle analysis (LCA) are aimed at expanding and deepening traditional approaches and creating a more complete description of the processes with the analysis of sustainable development (LCSA) to cover not only the problems associated mainly with the product (product level), but also complex problems related to the construction sector of the economy (at the sector level) or even the general economic level (economy level). The approach to “environmental design” is based on such models and methods of design, which takes into account a set of factors of their impact on the environment, based on the concept of “full life cycle” or models of accounting for total energy consumption and integrated CO2 emission. All of this could become a basis for the solution of the global problem – to contain the growing burden on the environment, providing a 50% reduction in CO2 emissions and energy consumption in the construction industry. Hence a special sharpness P. K. Mehta’s phrase acquires: “...the future of the cement and concrete industry will largely depend on our ability to link their growth for sustainable development...” The above-mentioned acute and urgent problems form the basis of the agenda of the Second edition of International Workshop on “Durability and Sustainability of Concrete Structures – DSCS-2018,” held in Moscow on 6 – 7 June 2018 under the auspices of the American Concrete Institute, the International Federation on structural concrete and the International Union of experts and laboratories in the field of building materials, systems and structures. The selected papers of this major forum, which brought together more than 150 experts from almost 40 countries of the world, are collected in this ACI SP

    Verification of the presence of superabsorbent polymers (SAP) in fresh concrete: results of an interlaboratory study of RILEM TC 260‐RSC

    No full text
    New methods are proposed for the verification of the presence of superabsorbent polymers (SAP) in freshly mixed concrete and estimation of SAP quantity. The methods are in general based on flushing concrete with excess water. They allow separating the light, water-sorbed hydrogel particles from the mineral components in the fresh concrete and making these particles available for further tests. Two types of tests are proposed: Test 1 serves for a visual verification of the presence of SAP (qualitative test), while Test 2 enables quantifying the mass of the collected SAP as a proxy of their concentration in concrete (quantitative test). Different procedures are proposed for these two test methods and their performance is evaluated. The testing procedures were scrutinized in an interlaboratory study carried out by 14 participants from 12 countries. All participating groups detected the presence of SAP in the mix using the qualitative procedures (Test 1). Based on this outcome, we suggest that this method should be applied in the field. In contrast, while most participants obtained reasonably reliable results with the quantification procedure of Test 2, some participants reported large errors. Therefore, the quantification method needs to be further refined, starting from the experience gained in this interlaboratory study

    Verification of the presence of superabsorbent polymer (SAP) in fresh concrete : results of an interlaboratory study

    No full text
    Abstract: New methods are proposed for the verification of the presence of superabsorbent polymers (SAP) in freshly mixed concrete and estimation of SAP quantity. The methods are in general based on flushing concrete with excess water. They allow separating the light, water-sorbed hydrogel particles from the mineral components in the fresh concrete and making these particles available for further tests. Two types of tests are proposed: Test 1 serves for a visual verification of the presence of SAP (qualitative test), while Test 2 enables to quantify the mass of the collected SAP as a proxy of their concentration in concrete (quantitative test). Different procedures are proposed for these two test methods and their performance is evaluated. The testing procedures were scrutinized in an interlaboratory study carried out by 14 participants from 12 countries. All participating groups detected the presence of SAP in the mix using the qualitative procedures (Test 1). Based on this outcome, we suggest that this method should be applied in the field. In contrast, while most participants obtained reasonably reliable results with the quantification procedure of Test 2, some participants reported large errors. Therefore, the quantification method needs to be further refined, starting from the experience gained in this interlaboratory study
    corecore