121 research outputs found

    Photoemission study of the spin-density wave state in thin films of Cr

    Full text link
    Angle-resolved photoemission (PE) was used to characterize the spin-density wave (SDW) state in thin films of Cr grown on W(110). The PE data were analysed using results of local spin density approximation layer-Korringa-Kohn-Rostoker calculations. It is shown that the incommensurate SDW can be monitored and important parameters of SDW-related interactions, such as coupling strength and energy of collective magnetic excitations, can be determined from the dispersion of the renormalized electronic bands close to the Fermi energy. The developed approach can readily be applied to other SDW systems including magnetic multilayer structures.Comment: 4 figure

    Quasi-freestanding and single-atom thick layer of hexagonal boron nitride as a substrate for graphene synthesis

    Full text link
    We demonstrate that freeing a single-atom thick layer of hexagonal boron nitride (hbn) from tight chemical bonding to a Ni(111) thin film grown on a W(110) substrate can be achieved by intercalation of Au atoms into the interface. This process has been systematically investigated using angle-resolved photoemission spectroscopy, X-ray photoemission and absorption techniques. It has been demonstrated that the transition of the hbn layer from the "rigid" into the "quasi-freestanding" state is accompanied by a change of its lattice constant. Using chemical vapor deposition, graphene has been successfully synthesized on the insulating, quasi-freestanding hbn monolayer. We anticipate that the in situ synthesized weakly interacting graphene/hbn double layered system could be further developed for technological applications and may provide perspectives for further inquiry into the unusual electronic properties of graphene.Comment: in print in Phys. Rev.

    Similar temperature scale for valence changes in Kondo lattices with different Kondo temperatures

    Full text link
    The Kondo model predicts that both the valence at low temperatures and its temperature dependence scale with the characteristic energy T_K of the Kondo interaction. Here, we study the evolution of the 4f occupancy with temperature in a series of Yb Kondo lattices using resonant X-ray emission spectroscopy. In agreement with simple theoretical models, we observe a scaling between the valence at low temperature and T_K obtained from thermodynamic measurements. In contrast, the temperature scale T_v at which the valence increases with temperature is almost the same in all investigated materials while the Kondo temperatures differ by almost four orders of magnitude. This observation is in remarkable contradiction to both naive expectation and precise theoretical predictions of the Kondo model, asking for further theoretical work in order to explain our findings. Our data exclude the presence of a quantum critical valence transition in YbRh2Si2

    Wave-vector dependent intensity variations of the Kondo peak in photoemission from CePd3_3

    Full text link
    Strong angle-dependent intensity variations of the Fermi-level feature are observed in 4d - 4f resonant photoemission spectra of CePd3_3(111), that reveal the periodicity of the lattice and largest intensity close to the Gamma points of the surface Brillouin zone. In the framework of a simplified periodic Anderson model the phenomena may quantitatively be described by a wave-vector dependence of the electron hopping matrix elements caused by Fermi-level crossings of non-4f-derived energy bands

    High-resolution resonant inelastic soft X-ray scattering as a probe of the crystal electrical field in lanthanides demonstrated for the case of CeRh2Si2

    Get PDF
    The magnetic properties of rare earth compounds are usually well captured by assuming a fully localized f shell and only considering the Hund's rule ground state multiplet split by a crystal electrical field (CEF). Currently, the standard technique for probing CEF excitations in lanthanides is inelastic neutron scattering. Here we show that with the recent leap in energy resolution, resonant inelastic soft X-ray scattering has become a serious alternative for looking at CEF excitations with some distinct advantages compared to INS. As an example we study the CEF scheme in CeRh2Si2, a system that has been intensely studied for more than two decades now but for which no consensus has been reached yet as to its CEF scheme. We used two new features that have only become available very recently in RIXS, high energy resolution of about 30 meV as well as polarization analysis in the scattered beam, to find a unique CEF description for CeRh2Si2. The result agrees well with previous INS and magnetic susceptibility measurements. Due to its strong resonant character, RIXS is applicable to very small samples, presents very high cross sections for all lanthanides, and further benefits from the very weak coupling to phonon excitation. The rapid progress in energy resolution of RIXS spectrometers is making this technique increasingly attractive for the investigation of the CEF scheme in lanthanides

    How chemical pressure affects the fundamental properties of rare-earth pnictides: an ARPES view

    Get PDF
    Angle-resolved photoelectron spectroscopy, supplemented by theoretical calculations has been applied to study the electronic structure of heavy-fermion material CeFePO, a homologue to the Fe-based high-temperature superconductors, and CeFeAs_0.7P_0.3O, where the applied chemical pressure results in a ferromagnetic order of the 4f moments. A comparative analysis reveals characteristic differences in the Fe-derived band structure for these materials, implying a rather different hybridization of valence electrons to the localized 4f orbitals. In particular, our results suggest that the ferromagnetism of Ce moments in CeFeAs_0.7P_0.3O is mediated mainly by Fe 3d_xz/yz orbitals, while the Kondo screening in CeFePO is instead due to a strong interaction of Fe 3d_3z^2-r^2 orbitals.Comment: 5 pages, 3 figures, accepted for publication in Phys. Rev. B (Rapid

    CeFePO: f-d hybridization and quenching of superconductivity

    Get PDF
    Being homologue to the new, Fe-based type of high-temperature superconductors, CeFePO exhibits magnetism, Kondo and heavy-fermion phenomena. We experimentally studied the electronic structure of CeFePO by means of angle-resolved photoemission spectroscopy. In particular, contributions of the Ce 4f-derived states and their hybridization to the Fe 3d bands were explored using both symmetry selection rules for excitation and their photoionization cross-section variations as a function of photon energy. It was experimentally found - and later on confirmed by LDA as well as DMFT calculations - that the Ce 4f states hybridize to the Fe 3d states of d_{3z^2-r^2} symmetry near the Fermi level that discloses their participation in the occurring electron-correlation phenomena and provides insight into mechanism of superconductivity in oxopnictides.Comment: 5 pages, 3 figure

    Insight into the electronic structure of the centrosymmetric skyrmion magnet GdRu2_2Si2_2

    Get PDF
    The discovery of a square magnetic-skyrmion lattice in GdRu2_2Si2_2, with the smallest so far found skyrmion diameter and without a geometrically frustrated lattice, has attracted significant attention, particularly for potential applications in memory devices and quantum computing. In this work, we present a comprehensive study of surface and bulk electronic structures of GdRu2_2Si2_2 by utilizing momentum-resolved photoemission (ARPES) measurements and first-principles calculations. We show how the electronic structure evolves during the antiferromagnetic transition when a peculiar helical order of 4ff magnetic moments within the Gd layers sets in. A nice agreement of the ARPES-derived electronic structure with the calculated one has allowed us to characterize the features of the Fermi surface (FS), unveil the nested region along the kzk_z at the corner of the 3D FS, and reveal their orbital compositions. Our findings suggest that the Ruderman-Kittel-Kasuya-Yosida interaction plays a decisive role in stabilizing the spiral-like order of Gd 4ff moments responsible for the skyrmion physics in GdRu2_2Si2_2. Our results provide a deeper understanding of electronic and magnetic properties of this material, which is crucial for predicting and developing novel skyrmion-based devices.Comment: 13 pages, 8 figure
    • …
    corecore