39 research outputs found

    Sex specificity in innate immunity of insect larvae

    Get PDF
    The innate immunity of insects has been widely studied. Although the effect of sex on insect immunity has been extensively discussed, differences in immunity between the sexes of larvae insects remain largely unstudied. Studying larval sex differences in immunity may provide valuable information about the mechanisms underlying the insect immune system, which, in turn, can be valuable for the development and improvement of pest management. Here we compared the antibacterial activity in both the midgut tissue and cell-free hemolymph of Lymantria dispar L. (Lepidoptera: Erebidae) females and males at the larval stage without and after a challenge by entomopathogenic bacterium Bacillus thuringiensis Berliner. We also evaluated the sex-specific mortality of L. dispar induced by B. thuringiensis infection. We find that antibacterial activity in the midgut is activated by infection, but only in females. Thus, sex differences in immunity can have important effects even before sexual differentiation at adulthood

    Rock Microhabitats Provide Suitable Thermal Conditions for Overwintering Insects: A Case Study of the Spongy Moth (<i>Lymantria dispar</i> L.) Population in the Altai Mountains

    No full text
    Many insect species overwinter in various rock shelters (cavities and crevices), but the microclimates of rock biotopes remain poorly understood. We investigated the temperature dynamics in rock microhabitats where clusters of egg masses of the wintering spongy moth Lymantria dispar L. (SM) were observed. Our research objective was to find the relation between the ovipositing behaviour of females and the landscape features in different parts of this species’ range. Studies of the ecology of the SM are important from a practical point of view, as the moth causes significant economic damage to forests of the Holarctic. We found that the average monthly temperature of rock surfaces in the studied microhabitats was 2–5 °C above the average air temperature. More importantly, the minimum temperatures in these microhabitats were 4–13 °C higher than the minimum air temperature. These results help to reassess the role of the mountain landscape in the spread of insect species. Rock biotopes provided a significant improvement in the conditions for wintering insects. We believe that, when modelling the spread of invasive species (such as the SM), it is necessary to account for the influence of rock biotopes that may facilitate shifts in the northern boundaries of their range

    Molecular sexing of Lepidoptera

    No full text
    We developed a universal method of Lepidoptera molecular sexing. The method is based on comparing the number of copies of the same gene in different sexes. Males of the majority of lepidopteran species have two Z chromosomes, whereas females have only one Z chromosome. Correspondingly, the number of copies of each gene located on this chromosome differs by two times between males and females. For quantitative estimation, we used qPCR. Via multiple alignment of the kettin (a Z chromosome gene) nucleotide sequences, we detected the most conserved fragment and designed primers with broad interspecies specificity for Lepidoptera. Using these primers, we successfully determined the sex of three lepidopteran species belonging to different superfamilies. The developed method is a simple, cost-effective and high-throughput technique for routine sexing. The sex of lepidopteran individuals can be examined at any developmental stage

    A Comparison of the Vertical Transmission of High- and Low-Virulence Nucleopolyhedrovirus Strains in Lymantria Dispar L.

    No full text
    Baculoviruses can persist in insect host organisms after infection and may be vertically transmitted to the next generation, in which they may be reactivated. The goal of the present study was to compare the efficiency of the vertical transmission of high- and low-virulence strains and the subsequent reactivation of Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) in the offspring of Lymantria dispar L. adults who survived after viral infection. As a result of parental infection, the fecundity of survived females, pupae weight, and fertility were significantly different compared to the untreated insects. However, differences in these parameters between high- and low-virulence strains were not observed. The prevalence of virus strains in the offspring measured by quantitative polymerase chain reaction also did not differ. When the larvae reached the fourth instar, they were starved to activate the vertically transmitted virus. The frequency of virus activation in the experiment was not dependent on the virulence of the virus strains. These results are helpful for understanding the strategy of virus survival in nature and for the selection of the most effective strains with transgenerational effects in the years following pest treatment

    The effect of mixtures of Bacillus thuringiensis-based insecticide and multiple nucleopolyhedrovirus of Lymantria dispar L. in combination with an optical brightener on L. dispar larvae

    No full text
    This study evaluated the efficacy of the commercially available insecticide Lepidocide based on Bacillus thuringiensis var. kurstaki and Lymantria dispar multiple nucleopolyhedrovirus (LdMNPV) and their combination with an optical brightener to control L. dispar L. Efficacy against both second and fourth instar L. dispar larvae was evaluated, and the type of interaction between the tested components was determined using second instar L. dispar larvae. Most combinations of Lepidocide and LdMNPV containing a 5 mg ml(-1) optical brightener had synergistic effects, and their mixtures were most effective in reducing the number of second instar larvae. In contrast, mixtures containing Lepidocide and LdMNPV with an optical brightener caused significantly lower mortality of fourth instar L. dispar larvae than mixtures without Lepidocide. This result suggests that an increased concentration of Lepidocide in a mixture containing LdMNPV and an optical brightener leads to an antagonistic effect on insect mortality. The possible reasons for the differences in the observed effects of the components on the second and fourth instar L. dispar larvae may be associated with the resistance of fourth-instar larvae to the antifeedant effect of B. thuringiensis

    Asynchrony between host plant and insects-defoliator within a tritrophic system: The role of herbivore innate immunity

    No full text
    The effects of asynchrony in the phenology of spring-feeding insect-defoliators and their host plants on insects’ fitness, as well as the importance of this effect for the population dynamics of outbreaking species of insects, is a widespread and well-documented phenomenon. However, the spreading of this phenomenon through the food chain, and especially those mechanisms operating this spreading, are still unclear. In this paper, we study the effect of seasonally declined leafquality (estimated in terms of phenolics and nitrogen content) on herbivore fitness, immune parameters and resistance against pathogen by using the silver birch Betula pendula—gypsy moth Lymantria dispar—nucleopolyhedrovirus as the tritrophic system. We show that a phenological mismatch induced by the delay in the emergence of gypsy moth larvae and following feeding on mature leaves has negative effects on the female pupal weight, on the rate of larval development and on the activity of phenoloxidase in the plasma of haemolymph. In addition, the larval susceptibility to exogenous nucleopolyhydrovirus infection as well as covert virus activation were both enhanced due to the phenological mismatch. The observed effects of phenological mismatch on insect-baculovirus interaction may partially explain the strong and fast fluctuations in the population dynamics of the gypsy moth that is often observed in the studied part of the defoliator area. This study also reveals some indirect mechanisms of effect related to host plant quality, which operate through the insect innate immune status and affect resistance to both exogenous and endogenous virus
    corecore