12 research outputs found

    An unconscious man with profound drug-induced hypoglycaemia

    Get PDF
    Introduction: Hypoglycaemia has been reported as an unusual complication of tramadol use and in a few cases of tramadol poisoning, but the exact mechanism is not known. Case description: An ambulance crew was dispatched to an unconscious 46-year old man. A glucometer point-of-care measurement revealed a profound hypoglycaemia (1.9 mmol/L). Treatment with intravenous glucose was started and the patient was transported to the hospital. The patient had several episodes of pulseless electrical activity requiring cardiopulmonary resuscitation in the ambulance and upon arrival in the hospital. Despite continuous glucose infusion the hypoglycaemia was difficult to correct during the next few hours and the patient developed hypokalaemia. Further investigation to identify the cause of hypoglycaemia revealed that insulin and C-peptide were inappropriately raised. A toxicological investigation revealed the presence of tramadol and its metabolites in lethal concentrations. Also acetaminophen, ibuprofen and lormetazepam were present. Ethanol screening was negative (< 0.1 g/L) and no sulfonylurea were detected. The patient developed multiple organ failure, but eventually recovered. What happened: The hypoglycaemia was caused by inappropriate stimulation of insulin secretion in a patient intoxicated with tramadol. The sudden hypokalaemia was caused by a massive intracellular shift of potassium in response to the hyperinsulinemia, triggered by the intravenous administration of glucose. Main lesson: To our knowledge, we are the first to document a significant rise in endogenous insulin production in a hypoglycaemic patient presenting with tramadol intoxication. Our observation suggests that hyperinsulinemia could be the cause of the hypoglycaemia associated with tramadol use

    Prediction of functional outcome after acute ischemic stroke : comparison of the CT-DRAGON score and a reduced features set

    Get PDF
    Background and Purpose:The CT-DRAGON score was developed to predict long-term functional outcome after acute stroke in the anterior circulation treated by thrombolysis. Its implementation in clinical practice may be hampered by its plethora of variables. The current study was designed to develop and evaluate an alternative score, as a reduced set of features, derived from the original CT-DRAGON score. Methods:This single-center retrospective study included 564 patients treated for stroke, in the anterior and the posterior circulation. At 90 days, favorable [modified Rankin Scale score (mRS) of 0-2] and miserable outcome (mRS of 5-6) were predicted by the CT-DRAGON in 427 patients. Bootstrap forests selected the most relevant parameters of the CT-DRAGON, in order to develop a reduced set of features. Discrimination, calibration and misclassification of both models were tested. Results:The area under the receiver operating characteristic curve (AUROC) for the CT-DRAGON was 0.78 (95% CI 0.74-0.81) for favorable and 0.78 (95% CI 0.72-0.83) for miserable outcome. Misclassification was 29% for favorable and 13.5% for miserable outcome, with a 100% specificity for the latter. National Institutes of Health Stroke Scale (NIHSS), pre-stroke mRS and age were identified as the strongest contributors to favorable and miserable outcome and named the reduced features set. While CT-DRAGON was only available in 323 patients (57%), the reduced features set could be calculated in 515 patients (91%) (p < 0.001). Misclassification was 25.8% for favorable and 14.4% for miserable outcome, with a 97% specificity for miserable outcome. The reduced features set had better discriminative power than CT-DRAGON for both outcomes (both p < 0.005), with an AUROC of 0.82 (95% CI 0.79-0.86) and 0.83 (95% CI 0.77-0.87) for favorable and miserable outcome, respectively. Conclusions:The CT-DRAGON score revealed acceptable discrimination in our cohort of both anterior and posterior circulation strokes, receiving all treatment modalities. The reduced features set could be measured in a larger cohort and with better discrimination. However, the reduced features set needs further validation in a prospective, multicentre study

    Peri-operative red blood cell transfusion in neonates and infants: NEonate and Children audiT of Anaesthesia pRactice IN Europe: A prospective European multicentre observational study

    Get PDF
    BACKGROUND: Little is known about current clinical practice concerning peri-operative red blood cell transfusion in neonates and small infants. Guidelines suggest transfusions based on haemoglobin thresholds ranging from 8.5 to 12 g dl-1, distinguishing between children from birth to day 7 (week 1), from day 8 to day 14 (week 2) or from day 15 (≄week 3) onwards. OBJECTIVE: To observe peri-operative red blood cell transfusion practice according to guidelines in relation to patient outcome. DESIGN: A multicentre observational study. SETTING: The NEonate-Children sTudy of Anaesthesia pRactice IN Europe (NECTARINE) trial recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. PATIENTS: The data included 5609 patients undergoing 6542 procedures. Inclusion criteria was a peri-operative red blood cell transfusion. MAIN OUTCOME MEASURES: The primary endpoint was the haemoglobin level triggering a transfusion for neonates in week 1, week 2 and week 3. Secondary endpoints were transfusion volumes, 'delta haemoglobin' (preprocedure - transfusion-triggering) and 30-day and 90-day morbidity and mortality. RESULTS: Peri-operative red blood cell transfusions were recorded during 447 procedures (6.9%). The median haemoglobin levels triggering a transfusion were 9.6 [IQR 8.7 to 10.9] g dl-1 for neonates in week 1, 9.6 [7.7 to 10.4] g dl-1 in week 2 and 8.0 [7.3 to 9.0] g dl-1 in week 3. The median transfusion volume was 17.1 [11.1 to 26.4] ml kg-1 with a median delta haemoglobin of 1.8 [0.0 to 3.6] g dl-1. Thirty-day morbidity was 47.8% with an overall mortality of 11.3%. CONCLUSIONS: Results indicate lower transfusion-triggering haemoglobin thresholds in clinical practice than suggested by current guidelines. The high morbidity and mortality of this NECTARINE sub-cohort calls for investigative action and evidence-based guidelines addressing peri-operative red blood cell transfusions strategies. TRIAL REGISTRATION: ClinicalTrials.gov, identifier: NCT02350348

    A comparative study of patient satisfaction about anesthesia with dexmedetomidine for ambulatory dental surgery

    No full text
    OBJECTIVE: Intranasal administration of dexmedetomidine for monitored anesthesia care (MAC) appears to be an effective, safe, and appropriate alternative to general anesthesia (GA) for ambulatory dental surgery. Based on the available evidence we evaluated a new MAC protocol with intranasal dexmedetomidine as the primary choice. To assess a difference in patient satisfaction and anesthesia-related discomfort between GA and MAC in ambulatory dental surgery, a study was conducted among patients undergoing various dental procedures. Patient satisfaction and anesthesia-related discomfort were assessed on the first postoperative day using the Bauer patient satisfaction questionnaire. RESULTS: Although the differences were small, patients in the MAC group were overall more satisfied with the general care compared to the GA group (p < 0.02). Patients in the MAC group reported more postoperative drowsiness compared to the GA group (p < 0.05), but less postoperative hoarseness and sore throat (p = 0.005 and p < 0.001, respectively). Moreover, postoperative thirst was more common in the GA group (p = 0.002). In conclusion, the differences in patient satisfaction and anesthesia-related discomfort between GA and MAC in this implementation study were small but appeared to favor MAC with intranasal dexmedetomidine over GA as anesthesia method during dental ambulatory surgery

    An unconscious man with profound drug-induced hypoglycaemia

    No full text
    Introduction: Hypoglycaemia has been reported as an unusual complication of tramadol use and in a few cases of tramadol poisoning, but the exact mechanism is not known. Case description: An ambulance crew was dispatched to an unconscious 46-year old man. A glucometer point-of-care measurement revealed a profound hypoglycaemia (1.9 mmol/L). Treatment with intravenous glucose was started and the patient was transported to the hospital. The patient had several episodes of pulseless electrical activity requiring cardiopulmonary resuscitation in the ambulance and upon arrival in the hospital. Despite continuous glucose infusion the hypoglycaemia was difficult to correct during the next few hours and the patient developed hypokalaemia. Further investigation to identify the cause of hypoglycaemia revealed that insulin and C-peptide were inappropriately raised. A toxicological investigation revealed the presence of tramadol and its metabolites in lethal concentrations. Also acetaminophen, ibuprofen and lormetazepam were present. Ethanol screening was negative (< 0.1 g/L) and no sulfonylurea were detected. The patient developed multiple organ failure, but eventually recovered. What happened: The hypoglycaemia was caused by inappropriate stimulation of insulin secretion in a patient intoxicated with tramadol. The sudden hypokalaemia was caused by a massive intracellular shift of potassium in response to the hyperinsulinemia, triggered by the intravenous administration of glucose. Main lesson: To our knowledge, we are the first to document a significant rise in endogenous insulin production in a hypoglycaemic patient presenting with tramadol intoxication. Our observation suggests that hyperinsulinemia could be the cause of the hypoglycaemia associated with tramadol use.status: publishe

    Early goal-directed haemodynamic optimization of cerebral oxygenation in comatose survivors after cardiac arrest: the Neuroprotect post-cardiac arrest trial

    No full text
    AIMS: During the first 6-12 h of intensive care unit (ICU) stay, post-cardiac arrest (CA) patients treated with a mean arterial pressure (MAP) 65 mmHg target experience a drop of the cerebral oxygenation that may cause additional cerebral damage. Therefore, we investigated whether an early goal directed haemodynamic optimization strategy (EGDHO) (MAP 85-100 mmHg, SVO2 65-75%) is safe and could improve cerebral oxygenation, reduce anoxic brain damage, and improve outcome when compared with a MAP 65 mmHg strategy. METHODS AND RESULTS: A total of 112 out-of-hospital CA patients were randomly assigned to EGDHO or MAP 65 mmHg strategies during the first 36 h of ICU stay. The primary outcome was the extent of anoxic brain damage as quantified by the percentage of voxels below an apparent diffusion coefficient (ADC) score of 650.10-6 mm2/s on diffusion weighted magnetic resonance imaging (at day 5 ± 2 post-CA). Main secondary outcome was favourable neurological outcome (CPC score 1-2) at 180 days. In patients assigned to EGDHO, MAP (P < 0.001), and cerebral oxygenation during the first 12 h of ICU stay (P = 0.04) were higher. However, the percentage of voxels below an ADC score of 650.10-6 mm2/s did not differ between both groups [16% vs. 12%, odds ratio 1.37, 95% confidence interval (CI) 0.95-0.98; P = 0.09]. Also, the number of patients with favourable neurological outcome at 180 days was similar (40% vs. 38%, odds ratio 0.98, 95% CI 0.41-2.33; P = 0.96). The number of serious adverse events was lower in patients assigned to EGDHO (P = 0.02). CONCLUSION: Targeting a higher MAP in post-CA patients was safe and improved cerebral oxygenation but did not improve the extent of anoxic brain damage or neurological outcome.status: publishe

    Morbidity and mortality after anaesthesia in early life

    No full text
    Background: Neonates and infants requiring anaesthesia are at risk of physiological instability and complications, but triggers for peri-anaesthetic interventions and associations with subsequent outcome are unknown. Methods: This prospective, observational study recruited patients up to 60 weeks' postmenstrual age undergoing anaesthesia for surgical or diagnostic procedures from 165 centres in 31 European countries between March 2016 and January 2017. The primary aim was to identify thresholds of pre-determined physiological variables that triggered a medical intervention. The secondary aims were to evaluate morbidities, mortality at 30 and 90 days, or both, and associations with critical events. Results: Infants (n=5609) born at mean (standard deviation [SD]) 36.2 (4.4) weeks postmenstrual age (35.7% preterm) underwent 6542 procedures within 63 (48) days of birth. Critical event(s) requiring intervention occurred in 35.2% of cases, mainly hypotension (&gt;30% decrease in blood pressure) or reduced oxygenation (SpO2 &lt;85%). Postmenstrual age influenced the incidence and thresholds for intervention. Risk of critical events was increased by prior neonatal medical conditions, congenital anomalies, or both (relative risk [RR]=1.16; 95% confidence interval [CI], 1.04–1.28) and in those requiring preoperative intensive support (RR=1.27; 95% CI, 1.15–1.41). Additional complications occurred in 16.3% of patients by 30 days, and overall 90-day mortality was 3.2% (95% CI, 2.7–3.7%). Co-occurrence of intraoperative hypotension, hypoxaemia, and anaemia was associated with increased risk of morbidity (RR=3.56; 95% CI, 1.64–7.71) and mortality (RR=19.80; 95% CI, 5.87–66.7). Conclusions: Variability in physiological thresholds that triggered an intervention, and the impact of poor tissue oxygenation on patient's outcome, highlight the need for more standardised perioperative management guidelines for neonates and infants. Clinical trial registration: NCT02350348.</p
    corecore