237 research outputs found

    New Observational Bounds to Quantum Gravity Signals

    Get PDF
    We consider a new set of effects arising from the quantum gravity corrections to the propagation of fields, associated with fluctuations of the spacetime geometry. Using already existing experimental data, we can put bounds on these effects that are more stringent by several orders of magnitude than those expected to be obtained in astrophysical observations. In fact these results can be already interpreted as questioning the whole scenario of linear (in lPl_P) corrections to the dispersion relations for free fields in Lorentz violating theories.Comment: Latex, to be published in PR

    Strangelet spectra from type II supernovae

    Get PDF
    We study in this work the fate of strangelets injected as a contamination in the tail of a "strange matter-driven" supernova shock. A simple model for the fragmentation and braking of the strangelets when they pass through the expanding oxygen shell is presented and solved to understand the reprocessing of this component. We find that the escaping spectrum is a scaled-down version of the one injected at the base of the oxygen shell. The supernova source is likely to produce low-energy particles of A1001000A \sim 100-1000 quite independently of the initial conditions. However, it is difficult that ultrarrelativistic strangelets (such as the hypothetical Centauro primaries) can have an origin in those explosive events.Comment: RevTex file, 5 pp., no figure

    Exact Philosophy of Space-Time

    Full text link
    Starting from Bunge's (1977) scientific ontology, we expose a materialistic relational theory of space-time, that carries out the program initiated by Leibniz, and provides a protophysical basis consistent with any rigorous formulation of General Relativity. Space-time is constructed from general concepts which are common to any consistent scientific theory and they are interpreted as emergent properties of the greatest assembly of things, namely, the world.Comment: 13 pages, 3 figures. Version compatible with the published one. arXiv admin note: substantial text overlap with arXiv:gr-qc/971006

    Instability of hyper-compact Kerr-like objects

    Full text link
    Viable alternatives to astrophysical black holes include hyper-compact objects without horizon, such as gravastars, boson stars, wormholes and superspinars. The authors have recently shown that typical rapidly-spinning gravastars and boson stars develop a strong instability. That analysis is extended in this paper to a wide class of horizonless objects with approximate Kerr-like geometry. A detailed investigation of wormholes and superspinars is presented, using plausible models and mirror boundary conditions at the surface. Like gravastars and boson stars, these objects are unstable with very short instability timescales. This result strengthens previous conclusions that observed hyper-compact astrophysical objects with large rotation are likely to be black holes.Comment: 15 pages, 3 figures. To be published in CQ

    Stratigraphy and chronology of a 15ka sequence of multi-sourced silicic tephras in a montane peat bog, eastern North Island, New Zealand.

    Get PDF
    We document the stratigraphy, composition, and chronology of a succession of 16 distal, silicic tephra layers interbedded with lateglacial and Holocene peats and muds up to c. 15 000 radiocarbon years (c. 18 000 calendar years) old at a montane site (Kaipo Bog) in eastern North Island, New Zealand. Aged from 665 +/- 15 to 14 700 +/- 95 14C yr BP, the tephras are derived from six volcanic centres in North Island, three of which are rhyolitic (Okataina, Taupo, Maroa), one peralkaline (Tuhua), and two andesitic (Tongariro, Egmont). Correlations are based on multiple criteria: field properties and stratigraphic interrelationships, ferromagnesian silicate mineral assemblages, glass-shard major element composition (from electron microprobe analysis), and radiocarbon dating. We extend the known distribution of tephras in eastern North Island and provide compositional data that add to their potential usefulness as isochronous markers. The chronostratigraphic framework established for the Kaipo sequence, based on both site-specific and independently derived tephra-based radiocarbon ages, provides the basis for fine-resolution paleoenvironmental studies at a climatically sensitive terrestrial site from the mid latitudes of the Southern Hemisphere. Tephras identified as especially useful paleoenvironmental markers include Rerewhakaaitu and Waiohau (lateglacial), Konini (lateglacial-early Holocene), Tuhua (middle Holocene), and Taupo and Kaharoa (late Holocene)

    Hyperextended Scalar-Tensor Gravity

    Get PDF
    We study a general Scalar-Tensor Theory with an arbitrary coupling funtion ω(ϕ)\omega (\phi ) but also an arbitrary dependence of the ``gravitational constant'' G(ϕ)G(\phi ) in the cases in which either one of them, or both, do not admit an analytical inverse, as in the hyperextended inflationary scenario. We present the full set of field equations and study their cosmological behavior. We show that different scalar-tensor theories can be grouped in classes with the same solution for the scalar field.Comment: latex file, To appear in Physical Review

    Cosmology, Oscillating Physics and Oscilllating Biology

    Get PDF
    According to recent reports there is an excess correlation and an apparent regularity in the galaxy one-dimensional polar distribution with a characteristic scale of 128 h1h^{-1} Mpc. This aparent spatial periodicity can be naturally explained by a time oscillation of the gravitational constant GG. On the other hand, periodic growth features of bivalve and coral fossiles appear to show a periodic component in the time dependence of the number of days per year. In this letter we show that a time oscillating gravitational constant with similar period and amplitude can explain such a feature.Comment: 9 pages. latex using revtex. This revised version is supposed to be free of e-mail nois

    Accelerating Universe and Cosmological Perturbation in the Ghost Condensate

    Get PDF
    In the simplest Higgs phase of gravity called ghost condensation, an accelerating universe with a phantom era (w<-1) can be realized without ghost or any other instabilities. In this paper we show how to reconstruct the potential in the Higgs sector Lagrangian from a given cosmological history (H(t), \rho(t)). This in principle allows us to constrain the potential by geometrical information of the universe such as supernova distance-redshift relation. We also derive the evolution equation for cosmological perturbations in the Higgs phase of gravity by employing a systematic low energy expansion. This formalism is expected to be useful to test the theory by dynamical information of large scale structure in the universe such as cosmic microwave background anisotropy, weak gravitational lensing and galaxy clustering.Comment: 30 pages; typos corrected; version accepted for publication in JCA

    Varying Fine Structure Constant and Black Hole Physics

    Get PDF
    Recent astrophysical observations suggest that the value of fine structure constant α=e2/c\alpha=e^2/\hbar c may be slowly increasing with time. This may be due to an increase of ee or a decrease of cc, or both. In this article, we argue from model independent considerations that this variation should be considered adiabatic. Then, we examine in detail the consequences of such an adiabatic variation in the context of a specific model of quantized charged black holes. We find that the second law of black hole thermodynamics is obeyed, regardless of the origin of the variation, and that interesting constraints arise on the charge and mass of black holes. Finally, we estimate the work done on a black hole of mass MM due to the proposed α\alpha variation.Comment: 7 Pages, Revtex. Reference added, minor changes. Version to appear in Class. Quant. Gra

    Results of the Search for Strange Quark Matter and Q-balls with the SLIM Experiment

    Full text link
    The SLIM experiment at the Chacaltaya high altitude laboratory was sensitive to nuclearites and Q-balls, which could be present in the cosmic radiation as possible Dark Matter components. It was sensitive also to strangelets, i.e. small lumps of Strange Quark Matter predicted at such altitudes by various phenomenological models. The analysis of 427 m^2 of Nuclear Track Detectors exposed for 4.22 years showed no candidate event. New upper limits on the flux of downgoing nuclearites and Q-balls at the 90% C.L. were established. The null result also restricts models for strangelets propagation through the Earth atmosphere.Comment: 14 pages, 11 EPS figure
    corecore