5,487 research outputs found
SQPR: Stream Query Planning with Reuse
When users submit new queries to a distributed stream processing system (DSPS), a query planner must allocate physical resources, such as CPU cores, memory and network bandwidth, from a set of hosts to queries. Allocation decisions must provide the correct mix of resources required by queries, while achieving an efficient overall allocation to scale in the number of admitted queries. By exploiting overlap between queries and reusing partial results, a query planner can conserve resources but has to carry out more complex planning decisions. In this paper, we describe SQPR, a query planner that targets DSPSs in data centre environments with heterogeneous resources. SQPR models query admission, allocation and reuse as a single constrained optimisation problem and solves an approximate version to achieve scalability. It prevents individual resources from becoming bottlenecks by re-planning past allocation decisions and supports different allocation objectives. As our experimental evaluation in comparison with a state-of-the-art planner shows SQPR makes efficient resource allocation decisions, even with a high utilisation of resources, with acceptable overheads
Monolithic Pixel Sensors in Deep-Submicron SOI Technology
Monolithic pixel sensors for charged particle detection and imaging
applications have been designed and fabricated using commercially available,
deep-submicron Silicon-On-Insulator (SOI) processes, which insulate a thin
layer of integrated full CMOS electronics from a high-resistivity substrate by
means of a buried oxide. The substrate is contacted from the electronics layer
through vias etched in the buried oxide, allowing pixel implanting and reverse
biasing. This paper summarizes the performances achieved with a first prototype
manufactured in the OKI 0.15 micrometer FD-SOI process, featuring analog and
digital pixels on a 10 micrometer pitch. The design and preliminary results on
the analog section of a second prototype manufactured in the OKI 0.20
micrometer FD-SOI process are briefly discussed.Comment: Proceedings of the PIXEL 2008 International Workshop, FNAL, Batavia,
IL, 23-26 September 2008. Submitted to JINST - Journal of Instrumentatio
Stable Propagation of a Burst Through a One-Dimensional Homogeneous Excitatory Chain Model of Songbird Nucleus HVC
We demonstrate numerically that a brief burst consisting of two to six spikes
can propagate in a stable manner through a one-dimensional homogeneous
feedforward chain of non-bursting neurons with excitatory synaptic connections.
Our results are obtained for two kinds of neuronal models, leaky
integrate-and-fire (LIF) neurons and Hodgkin-Huxley (HH) neurons with five
conductances. Over a range of parameters such as the maximum synaptic
conductance, both kinds of chains are found to have multiple attractors of
propagating bursts, with each attractor being distinguished by the number of
spikes and total duration of the propagating burst. These results make
plausible the hypothesis that sparse precisely-timed sequential bursts observed
in projection neurons of nucleus HVC of a singing zebra finch are intrinsic and
causally related.Comment: 13 pages, 6 figure
Spin dependent photoelectron tunnelling from GaAs into magnetic Cobalt
The spin dependence of the photoelectron tunnel current from free standing
GaAs films into out-of- plane magnetized Cobalt films is demonstrated. The
measured spin asymmetry (A) resulting from a change in light helicity, reaches
+/- 6% around zero applied tunnel bias and drops to +/- 2% at a bias of -1.6 V
applied to the GaAs. This decrease is a result of the drop in the photoelectron
spin polarization that results from a reduction in the GaAs surface
recombination velocity. The sign of A changes with that of the Cobalt
magnetization direction. In contrast, on a (nonmagnetic) Gold film A ~ 0%
Absence of bound states for waveguides in 2D periodic structures
We study a Helmholtz-type spectral problem in a two-dimensional medium
consisting of a fully periodic background structure and a perturbation in form
of a line defect. The defect is aligned along one of the coordinate axes,
periodic in that direction (with the same periodicity as the background), and
bounded in the other direction. This setting models a so-called "soft-wall"
waveguide problem. We show that there are no bound states, i.e., the spectrum
of the operator under study contains no point spectrum.Comment: This is an updated version of our paper (in slightly different form
in Journal of Mathematical Physics). An anonymous reviewer kindly made us
aware that ref. 10 is not applicable in our situation. An application of the
theorem in ref. 10 would have proved the absence of singular continuous
spectrum also. Our result on the absence of point spectrum is not affected by
thi
Quantum mechanics in multiply connected spaces
This paper analyses quantum mechanics in multiply connected spaces. It is
shown that the multiple connectedness of the configuration space of a physical
system can determine the quantum nature of physical observables, such as the
angular momentum. In particular, quantum mechanics in compactified Kaluza-Klein
spaces is examined. These compactified spaces give rise to an additional
angular momentum which can adopt half-integer values and, therefore, may be
identified with the intrinsic spin of a quantum particle.Comment: Latex 15 page
Recommended from our members
Some Case Example Exact Solutions for Quadratically Nonlinear Optical Media with PT-Symmetric Potentials
In the present paper we consider an optical system with a Ï (2)-type nonlinearity and unspecified PT -symmetric potential functions. Considering this as an inverse problem and positing a family of exact solutions in terms of cnoidal functions, we solve for the resulting potential functions in a way that ensures the potentials obey the requirements of PT -symmetry. We then focus on case examples of soliton and periodic solutions for which we present a stability analysis as a function of their amplitude parameters. Finally, we numerically explore the nonlinear dynamics of the associated waveforms to identify the outcome of the relevant dynamical instabilities of localized and extended states
Smooth analysis of the condition number and the least singular value
Let \a be a complex random variable with mean zero and bounded variance.
Let be the random matrix of size whose entries are iid copies of
\a and be a fixed matrix of the same size. The goal of this paper is to
give a general estimate for the condition number and least singular value of
the matrix , generalizing an earlier result of Spielman and Teng for
the case when \a is gaussian.
Our investigation reveals an interesting fact that the "core" matrix does
play a role on tail bounds for the least singular value of . This
does not occur in Spielman-Teng studies when \a is gaussian.
Consequently, our general estimate involves the norm .
In the special case when is relatively small, this estimate is nearly
optimal and extends or refines existing results.Comment: 20 pages. An erratum to the published version has been adde
BAC-HAPPY mapping (BAP mapping): a new and efficient protocol for physical mapping
Physical and linkage mapping underpin efforts to sequence and characterize the genomes of eukaryotic organisms by providing a skeleton framework for whole genome assembly. Hitherto, linkage and physical âcontigâ maps were generated independently prior to merging. Here, we develop a new and easy method, BAC HAPPY MAPPING (BAP mapping), that utilizes BAC library pools as a HAPPY mapping panel together with an Mbp-sized DNA panel to integrate the linkage and physical mapping efforts into one pipeline. Using Arabidopsis thaliana as an exemplar, a set of 40 Sequence Tagged Site (STS) markers spanning ~10% of chromosome 4 were simultaneously assembled onto a BAP map compiled using both a series of BAC pools each comprising 0.7x genome coverage and dilute (0.7x genome) samples of sheared genomic DNA. The resultant BAP map overcomes the need for polymorphic loci to separate genetic loci by recombination and allows physical mapping in segments of suppressed recombination that are difficult to analyze using traditional mapping techniques. Even virtual âBAC-HAPPY-mappingâ to convert BAC landing data into BAC linkage contigs is possible.Giang T. H. Vu, Paul H. Dear, Peter D. S. Caligari and Mike J. Wilkinso
- âŠ