191 research outputs found
Hypothyroidism conversion to hyperthyroidism: it's never too late.
Primary hypothyroidism is a common endocrine condition, most commonly caused by autoimmune thyroiditis (Hashimoto's disease) while Graves' disease is the most common cause of hyperthyroidism. Hypothyroidism is usually a permanent condition in most patients requiring lifelong levothyroxine treatment. Transformation from Hashimoto's disease to Graves' disease is considered rare but recently been increasingly recognised. We describe a case of a 61-year-old lady who was diagnosed with hypothyroidism approximately three decades ago and treated with levothyroxine replacement therapy. Approximately 27 years after the initial diagnosis of hypothyroidism, she started to become biochemically and clinically hyperthyroid. This was initially managed with gradual reduction in the dose of levothyroxine, followed by complete cessation of the medication, but she remained hyperthyroid, ultimately requiring anti-thyroid treatment with Carbimazole. This case highlights that there should be a high index of suspicion for a possible conversion of hypothyroidism to hyperthyroidism, even many years after the initial diagnosis of hypothyroidism. To our knowledge, this case illustrates the longest reported time interval between the diagnosis of hypothyroidism until the conversion to hyperthyroidism. Learning points: Occurrence of Graves' disease after primary hypothyroidism is uncommon but possible.In this case, there was a time-lapse of almost 28 years and therefore this entity may not be as rare as previously thought.Diagnosis requires careful clinical and biochemical assessment. Otherwise, the case can be easily confused for over-replacement of levothyroxine.We suggest measuring both anti-thyroid peroxidase (TPO) antibodies and TSH receptor antibodies (TRAB) in suspected cases.The underlying aetiology for the conversion is not exactly known but probably involves autoimmune switch by an external stimulus in genetically susceptible individuals
Design principles governing the development of theranostic anticancer agents and their nanoformulations with photoacoustic properties
The unmet need to develop novel approaches for cancer diagnosis and treatment has led to the evolution of theranostic agents, which usually include, in addition to the anticancer drug, an imaging agent based mostly on fluorescent agents. Over the past few years, a non-invasive photoacoustic imaging modality has been effectively integrated into theranostic agents. Herein, we shed light on the design principles governing the development of theranostic agents with photoacoustic properties, which can be formulated into nanocarriers to enhance their potency. Specifically, we provide an extensive analysis of their individual constituents including the imaging dyes, drugs, linkers, targeting moieties, and their formulation into nanocarriers. Along these lines, we present numerous relevant paradigms. Finally, we discuss the clinical relevance of the specific strategy, as also the limitations and future perspectives, and through this review, we envisage paving the way for the development of theranostic agents endowed with photoacoustic properties as effective anticancer medicines
Recommended from our members
REMOTELY RECHARGEABLE EPD
Radiation measurements inside the Contact Decon Maintenance Cell (CDMC) in the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) are required to determine stay times for personnel. A system to remotely recharge the transmitter of an Electronic Personnel Dosimeter (EPD) and bail assembly to transport the EPD within the CDMC was developed by the Savannah River National Laboratory (SRNL) to address this need
Comparing Health-Related Quality of Life of Cancer Patients under Chemotherapy and of Their Caregivers
Introduction. Cancer is a major disorder physically and psychologically affecting both patients and their caregivers. In this study, health-related quality of life (HRQoL) of patient-caregiver dyads during the period of chemotherapy was assessed. Material and Methods. Two hundred twenty-two cancer patient-caregiver dyads were enrolled in the study, which was conducted from October 2008 to March 2009. HRQoL was evaluated with EQ-5D. Results. The mean age of the sample was 57.4 and 48.9 for patients and caregivers, respectively. The EQ-5D descriptive system indicates that female patients more frequently experience anxiety and depression than male patients. Male and higher-education caregivers had higher VAS scores, while demographic factors did not seem to influence patients' HRQoL. Anxiety and depression of caregivers were correlated with patients' problems in self-care and usual activities. Conclusions. Quality of life is highly influenced during the period of chemotherapy for both patients and caregivers and is often under reported. Interventions that can improve HRQoL, especially in the domain of mental health for both cancer patients and their caregivers, need to be implemented
Recommended from our members
DEVELOPMENT OF TECHNOLOGY TO REMOTELY NAVIGATE VERTICAL PIPE ARRAYS
Situations exist around the Savannah River Site (SRS) and the Department of Energy (DOE) complex where it is advantageous to remotely navigate vertical pipe arrays. Specific examples are waste tanks in the SRS Tank Farms, which contain horizontal cooling coils at the tank bottom, vertical cooling coils throughout and a limited number of access points or ''risers''. These factors limit accessibility to many parts of these tanks by conventional means. Pipe Traveler technology has been developed to address these issues. The Pipe Traveler addresses these issues by using the vertical cooling coils as its medium of travel. The unit operates by grabbing a pipe using dual grippers located on either side of the equipment. Once securely attached to the pipe a drive wheel is extended to come in contact with the pipe. Rotation of the drive wheel causes the unit to rotate around the pipe. This action is continued until the second set of grippers is aligned with the next pipe. Extension pistons are actuated to extend the second set of grippers in contact with a second pipe. The second set of grippers is then actuated to grasp the pipe. The first set of grippers releases the original pipe and the process is repeated until the unit reaches its desired location. Once at the tool deployment location the desired tool may be used. The current design has proven the concept of pipe-to-pipe navigation. Testing of the Pipe Traveler has proven its ability to transfer itself from one pipe to another
Automated Assessment of Image Quality in 2D Echocardiography Using Deep Learning
Echocardiography is the most used modality for assessing cardiac functions. The reliability of the echocardiographic measurements, however, depends on the quality of the images. Currently, the method of image quality assessment is a subjective process, where an echocardiography specialist visually inspects the images. An automated image quality assessment system is thus required. Here, we have reported on the feasibility of using deep learning for developing such automated quality scoring systems. A scoring system was proposed to include specific quality attributes for on-axis, contrast/gain and left ventricular (LV) foreshortening of the apical view. We prepared and used 1,039 echocardiographic patient datasets for model development and testing. Average accuracy of at least 86% was obtained with computation speed at 0.013ms per frame which indicated the feasibility for real-time deployment
Integral abutment bridges: Investigation of seismic soil-structure interaction effects by shaking table testing
In recent years there has been renewed interest on integral abutment bridges (IABs), mainly due to their low construction and maintenance cost. Owing to the monolithic connection between deck and abutments, there is strong soil-structure interaction between the bridge and the backfill under both thermal action and earthquake shaking. Although some of the regions where IABs are adopted qualify as highly seismic, there is limited knowledge as to their dynamic behaviour and vulnerability under strong ground shaking. To develop a better understanding on the seismic behaviour of IABs, an extensive experimental campaign involving over 75 shaking table tests and 4800 time histories of recorded data, was carried out at EQUALS Laboratory, University of Bristol, under the auspices of EU-sponsored SERA project (Seismology and Earthquake Engineering Research Infrastructure Alliance for Europe). The tests were conducted on a 5 m long shear stack mounted on a 3 m × 3 m 6-DOF earthquake simulator, focusing on interaction effects between a scaled bridge model, abutments, foundation piles and backfill soil. The study aims at (a) developing new scaling procedures for physical modelling of IABs, (b) investigating experimentally the potential benefits of adding compressible inclusions (CIs) between the abutment and the backfill and (c) exploring the influence of different types of connection between the abutment and the pile foundation. Results indicate that the CI reduces the accelerations on the bridge deck and the settlements in the backfill, while disconnecting piles from the cap decreases bending near the pile head
Tensile capacity of FRP anchors in connecting FRP and TRM sheets to concrete
This paper investigates the effectiveness of carbon fiber spike anchors as a means of anchoring externally bonded (EB) fiber-reinforced polymers (FRP) and textile reinforced mortar (TRM) sheets into concrete. The investigation employs experimental work, which includes reinforced concrete (RC) columns strengthened with various configurations of EB FRP and TRM sheets connected to RC footings via carbon fiber spike anchors. The fiber spikes have two parts: the anchor part and the fan part. The anchor part is a bar-type dowel component that is epoxy pre-impregnated and inserted into epoxy filled holes within the footing. The fan part was impregnated in-situ and fanned out over and bonded to the EB reinforcement of the column. The connections were tested by pulling the columns upwards, thus applying tensile forces to the connection system. The direct tensile capacity of the anchors was determined for a number of vari- ables including the size and number of anchors, the bonding agent and the type and amount of EB rein- forcement. It is concluded that, with appropriate anchorage into concrete, the carbon fiber spike anchor is an effective anchorage system, and therefore, could be used in a range of strengthening applications to prevent premature delamination of FRP and TRM sheets from concrete surfaces
- …