1,176 research outputs found

    Evaluation of Burst Failure Robustness of Control Systems in the Fog

    Get PDF
    This paper investigates the robustness of control systems when a controller is run in a Fog environment. Control systems in the Fog are introduced and a discussion regarding relevant faults is presented. A preliminary investigation of the robustness properties of a MinSeg case study is presented and commented. The discussion is then used to outline future lines of research

    Large-eddy simulation of a particle-laden turbulent channel flow

    Get PDF
    Large-eddy simulations of a vertical turbulent channel flow with 420,000 solid particles are performed in order to get insight into fundamental aspects of a riser flow The question is addressed whether collisions between particles are important for the ow statistics. The turbulent channel ow corresponds to a particle volume fraction of 0.013 and a mass load ratio of 18, values that are relatively high compared to recent literature on large-eddy simulation of two-phase ows. In order to simulate this ow, we present a formulation of the equations for compressible ow in a porous medium including particle forces. These equations are solved with LES using a Taylor approximation of the dynamic subgrid-model. The results show that due to particle-uid interactions the boundary layer becomes thinner, leading to a higher skin-friction coefcient. Important effects of the particle collisions are also observed, on the mean uid prole, but even more o on particle properties. The collisions cause a less uniform particle concentration\ud and considerably atten the mean solids velocity prole

    Analysis of Embedded Controllers Subject to Computational Overruns

    Get PDF
    Microcontrollers have become an integral part of modern everyday embedded systems, such as smart bikes, cars, and drones. Typically, microcontrollers operate under real-time constraints, which require the timely execution of programs on the resource-constrained hardware. As embedded systems are becoming increasingly more complex, microcontrollers run the risk of violating their timing constraints, i.e., overrunning the program deadlines. Breaking these constraints can cause severe damage to both the embedded system and the humans interacting with the device. Therefore, it is crucial to analyse embedded systems properly to ensure that they do not pose any significant danger if the microcontroller overruns a few deadlines.However, there are very few tools available for assessing the safety and performance of embedded control systems when considering the implementation of the microcontroller. This thesis aims to fill this gap in the literature by presenting five papers on the analysis of embedded controllers subject to computational overruns. Details about the real-time operating system's implementation are included into the analysis, such as what happens to the controller's internal state representation when the timing constraints are violated. The contribution includes theoretical and computational tools for analysing the embedded system's stability, performance, and real-time properties.The embedded controller is analysed under three different types of timing violations: blackout events (when no control computation is completed during long periods), weakly-hard constraints (when the number of deadline overruns is constrained over a window), and stochastic overruns (when violations of timing constraints are governed by a probabilistic process). These scenarios are combined with different implementation policies to reduce the gap between the analysis and its practical applicability. The analyses are further validated with a comprehensive experimental campaign performed on both a set of physical processes and multiple simulations.In conclusion, the findings of this thesis reveal that the effect deadline overruns have on the embedded system heavily depends the implementation details and the system's dynamics. Additionally, the stability analysis of embedded controllers subject to deadline overruns is typically conservative, implying that additional insights can be gained by also analysing the system's performance

    Direct and Large-Eddy Simulation of the compressible turbulent mixing layer

    Get PDF
    The Large-Eddy Simulation technique of compressible flows and the effect of\ud compressibility on mixing layers are the main subjects of this thesis. Direct\ud Numerical Simulations (DNS) and Large-Eddy Simulations (LES) of the temporal\ud compressible mixing layer at various Mach and Reynolds numbers have been\ud conducted to investigate these subjects.\ud With respect to the LES technique, Large-Eddy Simulations have been performed\ud at convective Mach numbers 0.2, 0.6 and 1.2 and the results have been compared with filtered DNS-data. It appeared that the dynamic subgrid-models lead to relatively accurate results compared to the other models tested. The dynamic approach turned out to yield acceptable results too in LES of a mixing layer that currently cannot be simulated using DNS. Care has to be taken to ensure that the numerical errors in LES are sufficiently small. It was found that these errors are usually sufficiently small if the filter width equals twice the\ud grid-spacing. In addition to modelling the turbulent stress tensor, compressible\ud LES formally requires the modelling of the subgrid-terms in the energy equation,\ud which do not occur in incompressible LES. However, the compressible Large-\ud Eddy Simulations demonstrated that the turbulent stress tensor is the dominant\ud subgrid-term, even at convective Mach number 1.2. This important subgrid-term\ud was also investigated from a theoretical point of view and realizability conditions for this tensor were derived.\ud Regarding compressibility effects in the mixing layer, shock-waves were found\ud in the three-dimensional DNS at convective Mach number 1.2. Furthermore, we have investigated the cause of the mixing layer growth rate reduction with increasing compressibility, using four DNS-databases covering the range of convective Mach numbers from 0.2 to 1.2. It was found that the growth rate reduction cannot be explained by the dilatational terms, but rather by the reduced pressure fluctuations, leading to reduced pressure strain and turbulent production terms

    Reservoir formation in shallow granular flows through a contraction

    Get PDF
    We consider flow of dry granular matter down an inclined chute with a localized contraction. Measurements and analysis show that changes in particle volume fraction are important, especially across granular bores. For fixed upstream conditions and depending on the nozzle width of the contraction, we observe either small oblique jumps, a reservoir with a steady jump, or a reservoir with an upstream traveling bore. Shallow layer theory extended to include porosity changes qualitatively predicts these regimes. Implications for volcanic debris \ud ows are discussed

    Realizability conditions for the turbulent stress tensor in large-eddy simulation

    Get PDF
    The turbulent stress tensor in large-eddy simulation is examined from a theoretical point of view. Realizability conditions for the components of this tensor are derived, which hold if and only if the filter function is positive. The spectral cut-off, one of the filters frequently used in large-eddy simulation, is not positive. Consequently, the turbulent stress tensor based on spectrally filtered fields does not satisfy the realizability conditions, which leads to negative values of the generalized turbulent kinetic energy k. Positive filters, e. g. Gaussian or top-hat, always give rise to a positive k. For this reason, subgrid models which require positive values for k should be used in conjunction with e. g. the Gaussian or top-hat filter rather than with the spectral cutoff filter. If the turbulent stress tensor satisfies the realizability conditions, it is natural to require that the subgrid model for this tensor also satisfies these conditions. With respect to this point of view several subgrid models are discussed. For eddy-viscosity models a lower bound for the generalized turbulent kinetic energy follows as a necessary condition. This result provides an inequality for the model constants appearing in a ‘Smagorinsky-type’ subgrid model for compressible flows

    Stability and Performance Analysis of Control Systems Subject to Bursts of Deadline Misses

    Get PDF
    Control systems are by design robust to various disturbances, ranging from noise to unmodelled dynamics. Recent work on the weakly hard model - applied to controllers - has shown that control tasks can also be inherently robust to deadline misses. However, existing exact analyses are limited to the stability of the closed-loop system. In this paper we show that stability is important but cannot be the only factor to determine whether the behaviour of a system is acceptable also under deadline misses. We focus on systems that experience bursts of deadline misses and on their recovery to normal operation. We apply the resulting comprehensive analysis (that includes both stability and performance) to a Furuta pendulum, comparing simulated data and data obtained with the real plant. We further evaluate our analysis using a benchmark set composed of 133 systems, which is considered representative of industrial control plants. Our results show the handling of the control signal is an extremely important factor in the performance degradation that the controller experiences - a clear indication that only a stability test does not give enough indication about the robustness to deadline misses
    • …
    corecore