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In the traditional formulation of the large-eddy equations the spatial filter op-
eration is assumed to be of convolution-type, i.e., ūi = G ∗ ui where G is the
filter-kernel. These filters commutate with spatial differentiation (∂iuj = ∂iūj)
and necessarily imply a constant filter-width ∆. The commonly adopted decom-
position of the convective term corresponding to convolution filters is

∂j(uiuj) = ∂j(ūiūj) + ∂jτij with τij = uiuj − ūiūj (1)

in which the well-known turbulent stress-tensor τij is introduced which repre-
sents the subgrid closure problem.

Turbulent flow in complex geometries, such as frequently arise in technologi-
cal applications, are usually statistically stationairy and characterized by strong
spatial variations in local turbulence levels. Comparably quiescent, laminar re-
gions may be found next to regions in which the flow displays intense turbulent
fluctuations. In order to simulate these problems efficiently a filter-width which
adapts to these variations offers appealing advantages [1] . However, the use
of spatially non-uniform filter-widths implies that the filter-operation no longer
commutates with the derivative operators (∂iuj 6= ∂iūj). A common approach
to deal with these situations implies the interchange of the filter with differenti-
ation and consequently the introduction of additional commutation-errors [1] ,
[2] . The corresponding decomposition of the convective term then reads:

∂j(uiuj) = ∂j(ūiūj) + ∂jτij +
(
∂j(uiuj) − ∂j(uiuj)

)
(2)

where the last term is the commutation-error which represents an additional
subgrid closure problem that needs to be considered separately.

We propose an alternative, more direct treatment of large-eddy simulation
based on spatially non-uniform filtering. Instead of actually interchanging filter-
ing as in equation 2 we directly consider the spatially filtered derivative opera-
tor. Specifically we define Dj(·) = ∂j(·) and assume a top-hat filter with a volume
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of eight grid-cells at the collocated locations, i.e. at grid point (i, j, k) the filter
width is given by ∆1 = xi+1

1 − xi−1
1 , ∆2 = x

j+1
2 − x

j−1
2 , and ∆3 = xk+1

3 − xk−1
3 ,

where xi,j,k
m denotes the collocated grid in the xm direction. For technical con-

venience we assume the grid to be orthogonal, but the method can also be
formulated for more complicated grids.

For filtered-derivatives in e.g. the x1-direction we can write without any
approximation
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∂1f (x)dx1dx2dx3 (3)

=
1

∆1∆2∆3

(
Fi+1 − Fi−1

)
(4)

The symbol Fi denotes the surface integral of the quantity f at the volume
face x1 = xi

1. Next the surface integrals are numerically approximated with,
e.g., the trapezoidal rule, which is directly applicable on a non-uniform grid.
In this formulation we do not assume commutation of the filtering with partial
differentiation, but treat the combination of the filter and spatial derivative
directly. The approach is related to Schumann’s finite volume method [3] , but
we use a larger volume and do not assume that a filtered quantity is constant
within the volume.

The closure problem in this formulation can be expressed as

Dj(uiuj) = Dj(uiuj) + Djaij with aij = uiuj − uiuj (5)

where aij is the new subgrid stress-tensor which corresponds to the combined
filtered-derivative operation. It is not perceived to be a problem that this defini-
tion of the turbulent stress does not satisfy Galilean invariance for general filters,
because the non-uniformly filtered Navier-Stokes equations are not Galilean in-
variant either [2] .

A model for the new subgrid stress-tensor aij will be treated with a new
dynamic procedure. The standard dynamic procedure for the subgrid modeling
problem either assumes that the model-coefficient C is constant on the so-called

test-filter level denoted by (̂·) or a difficult integral equation needs to be solved
[2] , [4] . In contrast, the new subgrid stress-tensor aij satisfies a new ‘Germano-
type’ identity

Aij − aij = Bij (6)

where Aij = uiuj − ûiûj is the new subgrid-stress on the (̂·) level and Bij =

uiuj − ûiûj is the new resolved contribution. The essential difference with the
traditional Germano-identity is that the contribution of aij in equation 6 does
not require test-filtering.

First, we model aij with a dynamic eddy-viscosity model, given by mij =
−C∆2|S(u)|Sij(u). Substituting mij in equation 6 gives rise to a set of
equations for C without the assumption that the model-coefficient is constant
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on the scale of the test-filter. The model-coefficient C is obtained with the
standard least-squares approach,

C =
〈MijBij〉
〈MijMij〉

with Mij = −C(κ∆)2|S(û)|Sij(û) + C∆2|S(u)|Sij(u). (7)

Note that there is no test-filter operation in the second term of Mij . To avoid
that the filter operation crosses solid boundaries, it is appropriate to choose the
test-filter operation equal to the basic filter operation adopted in equation 3 ,

i.e. (̂·) = (·), which implies κ =
√

2 [4] .
In addition to the new dynamic eddy-viscosity model (M1), a new dynamic

mixed model (M2) can be formulated,

mij =
(
uiuj − uiuj

)
− C∆2|S(u)|Sij(u), (8)

where the term between brackets is the similarity approximation of aij and C is
obtained by substituting mij in equation 6 .
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Figure 1: Momentum thickness (left) and streamwise Reynolds stress profile at
t = 70 (right). Filtered DNS (o), LES with no model (solid), M1 (dashed) and
M2 (dash-dotted).

Large-eddy simulations with the new models M1 and M2 are performed for
the temporal mixing layer, the flow documented in [4] . The 323-grid is stretched
in the normal direction, clustered in the central region and the largest and small-
est grid-spacing differ with a factor 17. These simulations are compared with
a coarse-grid simulation with no subgrid-model (M0) and with a non-uniformly
filtered DNS, originally performed on a uniform 1923-grid.

The large-eddy equations are solved on a collocated grid in a compressible
formulation at low Mach number, such that compressibility effects are unimpor-
tant. With respect to spatial discretization the operator Dj is applied to ūiūj

and also to the pressure, whereas the derivatives in the viscous and subgrid-terms
are treated with smaller control volumes [4] . Several numerical approximations
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for the surface integrations in equation 3 and the top-hat filter operations that
explicitly occur in the models can be applied. For example, the trapezoidal rule
with uniform weights (A, second order), the trapezoidal rule with non-uniform
weights (B, second order) and an integration over the approximate parabolic
function (C, third order). For the present grid, the differences between the re-
sults for these methods are very small, therefore only results for method A are
presented.

The results shown in figure 1 indicate that the models M1 and M2 are im-
provements when compared to M0. The jagged structure of the profile obtained
with M0 in the right figure indicates that the resolved field contains an exces-
sive amount of small scales. The models M1 and M2 have about the correct
dissipative behaviour.

Summary

An efficient extension of large-eddy simulation to strongly non-uniform turbulent
flow involves the use of filters which do not commutate with spatial derivatives.
In particular, these filters have a spatially varying filter-width in order to adapt
to variations in local turbulence levels. We proposed a new treatment for the
commutation-problem in which the spatial filtering of the convective term is
directly combined with the derivative-operator rather than interchanged with
this operator. The latter would lead to additional commutation-errors. This
re-formulation gives rise to an adaptation of the remaining subgrid modeling
problem which is considered in a new dynamic context. Unlike the traditional
dynamic procedure, the new procedure does not require the assumption that the
model coefficient is slowly varying on the test-filter scale. The new approach was
tested on a moderately stretched grid and provided satisfactory results when the
new dynamic models were employed.
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