13 research outputs found

    Detailed Information Standard

    Get PDF
    The purpose of this standard is to increase the required information that must accompany any parts submitted to the Registry of Standard Biological Parts. This will give users of the parts better assurance of their authenticity and promote better Registry maintenance

    Software Systems for Automated Manufacturing of Engineered Organisms

    No full text
    Thesis (Ph.D.)--University of Washington, 2021Organism engineering is a field that employs principles of genetic engineering, synthetic biology, and bio-manufacturing to rapidly test and produce new genetically modified organisms at very large scales. Automation systems are often employed at these large scales to manage and execute laboratory operations. A current challenge in the field is how to automate organism engineering during the discovery phase of research when experimental failure rates are high and laboratory methodologies are variable. Here we demonstrate progress towards creating automated systems for rapidly engineering new strains of Saccharomyces cerevisiae, or baker’s yeast, during the discovery phase of research. This dissertation details (i) the design and construction of a new set of CRISPR-based genetic parts that can be used to engineer new behaviors in yeast, (ii) accompanying lab automation software that can be used to automate the engineering of new yeast strains, and (iii) applications of lab automation software to global health

    EZH2 and POU2F3 Can Aid in the Distinction of Thymic Carcinoma from Thymoma

    No full text
    Thymic carcinoma is an aggressive malignancy that can be challenging to distinguish from thymoma using histomorphology. We assessed two emerging markers for these entities, EZH2 and POU2F3, and compared them with conventional immunostains. Whole slide sections of 37 thymic carcinomas, 23 type A thymomas, 13 type B3 thymomas, and 8 micronodular thymomas with lymphoid stroma (MNTLS) were immunostained for EZH2, POU2F3, CD117, CD5, TdT, BAP1, and MTAP. POU2F3 (≥10% hotspot staining), CD117, and CD5 showed 100% specificity for thymic carcinoma versus thymoma with 51%, 86%, and 35% sensitivity, respectively, for thymic carcinoma. All POU2F3 positive cases were also positive for CD117. All thymic carcinomas showed >10% EZH2 staining. EZH2 (≥80% staining) had a sensitivity of 81% for thymic carcinoma and a specificity of 100% for thymic carcinoma versus type A thymoma and MNTLS but had poor specificity (46%) for thymic carcinoma versus B3 thymoma. Adding EZH2 to a panel of CD117, TdT, BAP1, and MTAP increased cases with informative results from 67/81 (83%) to 77/81 (95%). Overall, absent EZH2 staining may be useful for excluding thymic carcinoma, diffuse EZH2 staining may help to exclude type A thymoma and MNTLS, and ≥10% POU2F3 staining has excellent specificity for thymic carcinoma versus thymoma

    Benchmarking of Optical Dimerizer Systems

    No full text
    Optical dimerizers are a powerful new class of optogenetic tools that allow light-inducible control of protein–protein interactions. Such tools have been useful for regulating cellular pathways and processes with high spatiotemporal resolution in live cells, and a growing number of dimerizer systems are available. As these systems have been characterized by different groups using different methods, it has been difficult for users to compare their properties. Here, we set about to systematically benchmark the properties of four optical dimerizer systems, CRY2/CIB1, TULIPs, phyB/PIF3, and phyB/PIF6. Using a yeast transcriptional assay, we find significant differences in light sensitivity and fold-activation levels between the red light regulated systems but similar responses between the CRY2/CIB and TULIP systems. Further comparison of the ability of the CRY2/CIB1 and TULIP systems to regulate a yeast MAPK signaling pathway also showed similar responses, with slightly less background activity in the dark observed with CRY2/CIB. In the process of developing this work, we also generated an improved blue-light-regulated transcriptional system using CRY2/CIB in yeast. In addition, we demonstrate successful application of the CRY2/CIB dimerizers using a membrane-tethered CRY2, which may allow for better local control of protein interactions. Taken together, this work allows for a better understanding of the capacities of these different dimerization systems and demonstrates new uses of these dimerizers to control signaling and transcription in yeast

    EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma

    No full text
    In this study, a highly porous collagen-based biodegradable scaffold was developed as an alternative to synthetic, non-degradable corneal implants. The developed method involved lyophilization and subsequent stabilization through N-ethyl-N'-[3-dimethylaminopropyl] carbodiimide/N-hydroxy succinimide (EDC/NHS) cross-linking to yield longer lasting, porous scaffolds with a thickness similar to that of native cornea (500 pm). For collagen-based scaffolds, cross-linking is essential; however, it has direct effects on physical characteristics crucial for optimum cell behavior. Hence, the effect of cross-linking was studied by examining the influence of cross-linking on pore size distribution, bulk porosity and average pore size. After seeding the foam with human corneal keratocytes, cell proliferation, cell penetration into the scaffold and ECM production within the scaffold were studied. After a month of culture microscopical and immunohistochemical examinations showed that the foam structure did not undergo any significant loss of integrity, and the human corneal keratocytes populated the scaffold with cells migrating both longitudinally and laterally, and secreted some of the main constituents of the corneal ECM, namely collagen types 1, V and VI. The foams had a layer of lower porosity (skin layer) both at the top and the bottom. Foams had an optimal porosity (93.6%), average pore size (67.7 mu m), and chemistry for cell attachment and proliferation. They also had a sufficiently rapid degradation rate (73.6 +/- 1.1% in 4 weeks) and could be produced at a thickness close to that of the natural corneal stroma. Cells were seeded at the top surface of the foams and their numbers there was higher than the rest, basically due to the presence of the skin layer. This is considered to be an advantage when epithelial cells need to be seeded for the construction of hemi or full thickness cornea

    Development of a reconstructed cornea from collagen-chondroitin sulfate foams and human cell cultures

    No full text
    PURPOSE:To develop an artificial cornea, the ability to coculture the different cell types present in the cornea is essential. Here the goal was to develop a full-thickness artificial cornea using an optimized collagen-chondroitin sulfate foam, with a thickness close to that of human cornea, by coculturing human corneal epithelial and stromal cells and transfected human endothelial cells.METHODS:Corneal extracellular matrix was simulated by a porous collagen/glycosaminoglycan-based scaffold seeded with stromal keratocytes and then, successively, epithelial and endothelial cells. Scaffolds were characterized for bulk porosity and pore size distribution. The performance of the three-dimensional construct was studied by histology, immunofluorescence, and immunohistochemistry.RESULTS:The scaffold had 85% porosity and an average pore size of 62.1 microm. Keratocytes populated the scaffold and produced a newly synthesized extracellular matrix as characterized by immunohistochemistry. Even though the keratocytes lost their CD34 phenotype marker, the absence of smooth muscle actin fibers showed that these cells had not differentiated into myofibroblasts. The epithelial cells formed a stratified epithelium and began basement membrane deposition. An endothelial cell monolayer beneath the foam was also apparent.CONCLUSIONS:These results demonstrate that collagen-chondroitin sulfate scaffolds are good substrates for artificial cornea construction with good resilience, long-term culture capability, and handling properties

    Implementation of an interactive mobile application to pilot a rapid assay to detect HIV drug resistance mutations in Kenya.

    No full text
    Usability is an overlooked aspect of implementing lab-based assays, particularly novel assays in low-resource-settings. Esoteric instructions can lead to irreproducible test results and patient harm. To address these issues, we developed a software application based on "Aquarium", a laboratory-operating system run on a computer tablet that provides step-by-step digital interactive instructions, protocol management, and sample tracking. Aquarium was paired with a near point-of-care HIV drug resistance test, "OLA-Simple", that detects mutations associated with virologic failure. In this observational study we evaluated the performance of Aquarium in guiding untrained users through the multi-step laboratory protocol with little supervision. To evaluate the training by Aquarium software we conducted a feasibility study in a laboratory at Coptic Hope Center in Nairobi, Kenya. Twelve volunteers who were unfamiliar with the kit performed the test on blinded samples (2 blood specimens; 5 codons/sample). Steps guided by Aquarium included: CD4+ T-Cell separation, PCR, ligation, detection, and interpretation of test results. Participants filled out a short survey regarding their demographics and experience with the software and kit. None of the laboratory technicians had prior experience performing CD4+ separation and 7/12 had no experience performing laboratory-based molecular assays. 12/12 isolated CD4+ T cells from whole blood with yields comparable to isolations performed by trained personnel. The OLA-Simple workflow was completed by all, with genotyping results interpreted correctly by unaided-eye in 108/120 (90%) and by software in 116/120 (97%) of codons analyzed. In the surveys, participants favorably assessed the use of software guidance. The Aquarium digital instructions enabled first-time users in Kenya to complete the OLA-simple kit workflow with minimal training. Aquarium could increase the accessibility of laboratory assays in low-resource-settings and potentially standardize implementation of clinical laboratory tests

    OLA-simple : a software-guided HIV-1 drug resistance test for low-resource laboratories

    No full text
    BACKGROUND : HIV drug resistance (HIVDR) testing can assist clinicians in selecting treatments. However, high complexity and cost of genotyping assays limit routine testing in settings where HIVDR prevalence has reached high levels. METHODS : The oligonucleotide ligation assay (OLA)-Simple kit was developed for detection of HIVDR against first-line non-nucleoside/nucleoside reverse transcriptase inhibitors and validated on 672 codons (168 specimens) from subtypes A, B, C, D, and AE. The kit uses dry reagents to facilitate assay setup, lateral flow devices for visual HIVDR detections, and in-house software with an interface for guiding users and analyzing results. FINDINGS : HIVDR analysis of specimens by OLA-Simple compared to Sanger sequencing revealed 99.6 ± 0.3% specificity and 98.2 ± 0.9% sensitivity, and compared to high-sensitivity assays, 99.6 ± 0.6% specificity and 86.2 ± 2.5% sensitivity, with 2.6 ± 0.9% indeterminate results. OLA-Simple was performed more rapidly compared to Sanger sequencing (<4 h vs. 35-72 h). Forty-one untrained volunteers blindly tested two specimens each with 96.8 ± 0.8% accuracy. INTERPRETATION : OLA-Simple compares favorably with HIVDR genotyping by Sanger and sensitive comparators. Instructional software enabled inexperienced, first-time users to perform the assay with high accuracy. The reduced complexity, cost, and training requirements of OLA-Simple could improve access to HIVDR testing in low-resource settings and potentially allow same-day selection of appropriate antiretroviral therapy. FUND : USA National Institutes of Health R01; the Clinical and Retrovirology Research Core and the Molecular Profiling and Computational Biology Core of the UW CFAR; Seattle Children's Research Institute; UW Holloman Innovation Challenge Award; Pilcher Faculty Fellowship.USA National Institutes of Health R01; the Clinical and Retrovirology Research Core and the Molecular Profiling and Computational Biology Core of the UW CFAR; Seattle Children's Research Institute; UW Holloman Innovation Challenge Award; Pilcher Faculty Fellowship.http://www.elsevier.com/locate/ebiomam2020ImmunologyPaediatrics and Child Healt
    corecore