24 research outputs found

    Twenty years of conversion: from Scots pine plantations to oak dominated multifunctional forests

    No full text
    A conversion of previously even-aged pine-dominated forests to uneven-aged and multi-functional oak-dominated forests has been ongoing since 1993 in the Pyramida experimental forest (95 ha) situated in the buffer zone of PodyjĂ­ National Park, Czech Republic. Based on repeated surveys in 1992, 2003 and 2013, the conversion was assessed according to changes in: (i) the proportion of species; (ii) the distribution of DBH; (iii) the distribution of patches; and (iv) the distribution of forest types. The proportion of conifers decreased from 61.0% to 42.0%, and the proportion of broadleaved species increased accordingly. A sharp decline in the number of trees in the DBH class 70-109 mm was caused by the intense release of understorey broadleaved trees in young Scots pine small pole stage stands. The number of large habitat trees steadily increased in the DBH classes 430+ mm. The mean size of one patch decreased from 0.8 ha (1992) to 0.4 ha (2013). The spatial proportion of the target forest type (uneven-aged oak-dominated forest) increased from 8.5% in 1992 to 45.0% in 2013, and 35.1% of the area was fully converted during the 20 years. We expect 69.1% of the area to be converted after 30 years (2023)

    Below- and above-ground biomass, structure and patterns in ancient lowland coppices

    No full text
    Ancient coppice woods are areas that reflect long-term human influence and contain high species biodiversity. In this type of forest we aimed to: (i) analyze the below- and above ground biomass of stools and estimate the age of largest stool; (ii) define a “zone of interference” for coppices; (iii) describe and classify variability in the shape and size of coppice stools; (iv) define the specific characteristics of the spatial distribution of stems and stools. The study was conducted in the Podyjí National Park, Czech Republic, where two old oak coppice stands were fully stem mapped: Lipina (3.90 ha) and Šobes (2.37 ha). Cores were processed using TimeTable and PAST4. Below- and above-ground biomass of the largest stools was computed using the data from terrestrial laser scanner. Tree zones of influence were analyzed with V-Late landscape analysis tools using Shape Index. The pair correlation function and L function were used to describe the spatial patterns of trees with DBH ≥ 7 cm, and the null model of Complete Spatial Randomness and Matérn cluster process were tested. For a modeled old stool, we estimated a ratio of 2:1 for above/below ground volume with no reduction of below ground biomass regarding the hollow roots. The age of the largest stool was estimated 825 ± 145 (SE) years. An “Inner Zone of Influence” was defined, with a total area covering 323 m2 ha-1. The median area of this zone in both plots was 0.40 m2 for all trees, 0.23 m2 for singles and 0.87 m2 for stools. The Matérn cluster process was successfully fitted to our empirical data. In this model, the mean cluster radius ranged between 1.9 to 2.1 m and mean number of points per cluster was 1.7 and 1.9. The most prevalent characteristics of these ancient oak coppices were their compact shape and clustered spatial distribution up to 10 m

    Twenty years of conversion: from Scots pine plantations to oak dominated multifunctional forests

    No full text

    Below- and above-ground biomass, structure and patterns in ancient lowland coppices

    No full text
    corecore