10 research outputs found

    Antitumor activity and other biological actions of oligomers of ribonuclease A.

    Get PDF
    Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice. RNase A oligomers display a definite antitumor activity that increases as a function of the size of the oligomers. On ML-2 and HL-60 cells, dimers and trimers generally show a lower activity than bovine seminal RNase; the activity of tetramers, instead, is similar to or higher than that of the seminal enzyme. The growth of human melanoma in nude mice is inhibited by RNase A oligomers in the order dimers < trimers < tetramers. The action of the two tetramers is very strong, blocking almost completely the growth of melanoma. RNase A dimers, trimers, and tetramers display aspermatogenic effects similar to those of bovine seminal RNase, but, contrarily, they do not show any embryotoxic activity

    OLIGOMERIZATION OF RNase A:a) A STUDY OF THE INFLUENCE OF SERINE 80 RESIDUE ON THE 3D DOMAIN SWAPPING MECHANISMb) \u201cZERO-LENGTH\u201d DIMERS OF RNase A AND THEIR CATIONIZATION WITH PEI

    No full text
    "Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B.L. et al. (2007) Proteins 66, 183-195], were analyzed, and tested for their possible in vitro cytotoxic activity. Results: (i) Besides dimers, also trimers and higher oligomers can be identified among the products of the covalently linking reaction. (ii) The "zero-length" dimers prepared by us appear not to be a unique species, as was instead reported by Simons et al. The product is heterogeneous, as shown by the involvement in the amide bond of amino and carboxyl groups others than only those belonging to Lys66 and Glu9. This is demonstrated by results obtained with two RNase A mutants, E9A and K66A. (iii) The "zero-length" dimers degrade poly(A).poly(U) (dsRNA) and yeast RNA (ssRNA): while the activity against poly(A).poly(U) increases with the increase of the oligomer's basicity, the activity towards yeast RNA decreases with the increase of oligomers' basicity, in agreement with many previous data, but in contrast with the results reported by Simons et al. (iv) No cytotoxicity against various tumor cells lines could be evidenced in RNase A "zero-length" dimers. (v) They instead become cytotoxic if cationized by conjugation with polyethylenimine [Futami, J. et al. (2005) J. Biosci. Bioengin. 99, 95-103]. However, polyethylenimine derivatives of RNase A "zero-length" dimers and native, monomeric RNase A are equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, (vi) cytotoxicity seems not to be specific for tumor cells: polyethylenimine-cationized native RNase A is also cytotoxic towards human monocytes."Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B.L. et al. (2007) Proteins 66, 183-195], were analyzed, and tested for their possible in vitro cytotoxic activity. Results: (i) Besides dimers, also trimers and higher oligomers can be identified among the products of the covalently linking reaction. (ii) The "zero-length" dimers prepared by us appear not to be a unique species, as was instead reported by Simons et al. The product is heterogeneous, as shown by the involvement in the amide bond of amino and carboxyl groups others than only those belonging to Lys66 and Glu9. This is demonstrated by results obtained with two RNase A mutants, E9A and K66A. (iii) The "zero-length" dimers degrade poly(A).poly(U) (dsRNA) and yeast RNA (ssRNA): while the activity against poly(A).poly(U) increases with the increase of the oligomer's basicity, the activity towards yeast RNA decreases with the increase of oligomers' basicity, in agreement with many previous data, but in contrast with the results reported by Simons et al. (iv) No cytotoxicity against various tumor cells lines could be evidenced in RNase A "zero-length" dimers. (v) They instead become cytotoxic if cationized by conjugation with polyethylenimine [Futami, J. et al. (2005) J. Biosci. Bioengin. 99, 95-103]. However, polyethylenimine derivatives of RNase A "zero-length" dimers and native, monomeric RNase A are equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, (vi) cytotoxicity seems not to be specific for tumor cells: polyethylenimine-cationized native RNase A is also cytotoxic towards human monocytes

    Thermal Aggregation of Ribonuclease A. A contribution to the understanding of the role of 3D domain swapping in protein aggregation

    Get PDF
    By lyophilizing RNase A from 40% acetic acid solutions, two dimeric aggregates, the "minor" and "major" dimers (named here N-dimer and C-dimer, respectively), form by 3D domain swapping at. a ratio of 1:4. Trimeric and tetrameric aggregates are also obtained. The two dimers and the higher oligomers also form without a lyophilization step. By keeping IRNase A dissolved at a high concentration (generally 200 mg/ml) in various media at temperatures ranging from 23 to 70 degreesC for times varying from a few minutes to 2 h, various oligomers, in particular the two dimeric conformers, formed in quite different amounts, often inverting their relative quantities depending on the more or less severe unfolding conditions. When unfolding mainly concerned the N terminus of the protein, richer in hydrophilic residues, the N-dimer, formed by 3D domain swapping of the N-terminal alpha-helix of each monomer, prevailed over the C-dimer. Under more vigorous denaturing conditions, where also the C terminus of RNase A, richer in hydrophobic amino acids, unfolded, the C-dimer, formed by 3D domain swapping of the C-terminal beta-strand, prevailed over the other, possibly because of the induction to aggregation promoted by the hydrophobic residues present in the C termini of the two monomers

    "Zero-Length" Dimers of Ribonuclease A: Further Characterization and No Evidence of Cytotoxicity

    No full text
    "Zero-length" dimers of ribonuclease A, a novel type of dimers formed by two RNase A molecules bound to each other through a zero-length amide bond [Simons, B. L., et al. (2007) Proteins 66, 183-195], were further characterized and tested for their possible in vitro cytotoxic activity. Results obtained are the following. Besides dimers, also trimers and higher oligomers could be identified among the products of the covalently linking reaction, and the "zero-length" (Inners prepared by us appear not to be a unique species. The product was indeed heterogeneous, and results obtained with two RNase A mutants, E9A and K66A, indicated that amino and carboxyl groups others than those belonging to Lys66 and Glu9 are involved in the amide bond. As for their functional properties, the "zero-length" dimers degrade poly(A).poly(U) (dsRNA) with an activity that increases with the increase of the oligomer's basicity and yeast RNA (ssRNA) with an activity that instead decreases with the increase of oligomer's basicity, which is in agreement with previous data. No cytotoxicity of the RNase A "zero-length" dimers could be evidenced in assays performed with various tumor cells lines; the dimers, instead, become cytotoxic if cationized by conjugation with polyethylenimine (PEI) [Futami et al. (2005) J. Bioengin. 99, 95-103]. However, PEI derivatives of RNase A "zero-length" dimers and PEI derivatives of native RNase A resulted to be equally cytotoxic. In other words, protein "dimericity" does not play any role in this case. Moreover, the acquired cytotoxicity does not seem to be specific for tumor cells: PEI-cationized native RNase A was also cytotoxic toward human monocytes

    Increase of RNase A N-terminus Polarity or C-terminus Apolarity Changes the Two Domains' Propensity To Swap and Form the Two Dimeric Conformers of the Protein

    No full text
    Do the polarities of the N-terminus or the apolarity of the C-terminus of bovine RNase A influence the relative yields of its two 3D domain-swapped dimeric conformers, the N-dimer and C-dimer? We have addressed this question by substituting Ala-4 or Ala-5 with serine (A4S and A5S mutants) or Ser-123 with alanine (S123A mutant) through site-directed mutagenesis. Both the polarity of the N-terminus and the apolarity of the C-terminus of RNase A were, therefore, increased. CD spectra revealed no significant differences between the secondary structures of the mutants and native RNase A. According to thermal denaturation analyses, the A4S and A5S mutants are less stable, and the S123A mutant is more stable than wild type RNase A. By subjecting the mutants under mild or drastic denaturing conditions, side-by-side with native and recombinant RNase A, to a thermally induced oligomerization procedure, the following results were obtained. (i) The N-terminal mutants showed a higher propensity, with respect to the native protein, to form N-dimers under mild unfolding conditions. (ii) The C-terminal mutant showed a higher propensity to form the C-dimer under severely unfolding conditions. These results are discussed in light of the relative stabilities of the various RNase A species under different environmental conditions, and we conclude that the hydrophilic or hydrophobic character of the RNase N-terminus or C-terminus can be an important variable governing the oligomerization of RNase A and possibly other proteins through the 3D domain-swapping mechanism

    Degenerative action on mice and rat testes of polyspermine and itscomplexes with RNase A

    No full text
    A significant aspermatogenic activity, ascertained by microscopic studies of seminiferous tubules andinterstitial tissue, and by the observation of the entrance of immunity and fibrocytic cells in mice injectedwith polyspermine (PS) or polyspermine conjugated to monomeric or dimeric RNase A (PS-RNase A orPS-dimeric RNase A, respectively), was found either in mice injected or in non-injected testes.Polyspermine and its complexes with RNase A destroyed all spermatogenic and intertestitial tissue,including Leydic cells, as well as their ability to secrete testosterone. The total loss of spermatogenicactivity in injected testes is irreversible because spermatogonia cells also were destroyed. The injection ofPS into both mice testes determined the total degeneration of testicle tissue in 50% of injected testes. Thesecond half of testes was also partly degenerated, and if they were re-injected, almost all testes were fullydestroyed. PS-dimeric RNase A injected once into both testicles produced a stronger degeneration andalso the interruption of testosterone secretion in comparison with the effects due to injection of mice withPS or PS-RNase A. In all mice treated with these substances, as well as in rats in which PS was injectedtwice into their testes, we detected polymorfonucleates, monocytes, plasma cells, lymphocytes andfibrocytic cells. Antibodies against PS, PS-RNase A or PS-dimeric RNase A did not influence theaspermatogenic activity. Animals in which a repeated intra-peritoneal injection was carried out did notlose body mass and remained in good condition, with the exception of mice injected with spermine

    Antitumor activity and other biological actions of oligomers of ribonuclease A

    No full text
    Dimers, trimers, and tetramers of bovine ribonuclease A, obtained by lyophilization of the enzyme from 40% acetic acid solutions, were purified and isolated by cation exchange chromatography. The two conformers constituting each aggregated species were assayed for their antitumor, aspermatogenic, or embryotoxic activities in comparison with monomeric RNase A and bovine seminal RNase, which is dimeric in nature. The antitumor action was tested in vitro on ML-2 (human myeloid leukemia) and HL-60 (human myeloid cell line) cells and in vivo on the growth of human non-pigmented melanoma (line UB900518) transplanted subcutaneously in nude mice. RNase A oligomers display a definite antitumor activity that increases as a function of the size of the oligomers. On ML-2 and HL-60 cells, dimers and trimers generally show a lower activity than bovine seminal RNase; the activity of tetramers, instead, is similar to or higher than that of the seminal enzyme. The growth of human melanoma in nude mice is inhibited by RNase A oligomers in the order dimers &lt; trimers &lt; tetramers. The action of the two tetramers is very strong, blocking almost completely the growth of melanoma. RNase A dimers, trimers, and tetramers display aspermatogenic effects similar to those of bovine seminal RNase, but, contrarily, they do not show any embryotoxic activity

    Some biological actions of PEG-conjugated RNase A oligomers

    No full text
    Previously we have shown that monomeric RNase A has no significant biological activity, whereas its oligomers (dimer to tetramer) prepared by lyophilizing from 50% acetic acid solutions, show remarkable aspermatogenic and antitumor activities. Furthermore, conjugates prepared by chemical binding of native RNase A to polyethylene glycol (PEG) have shown a significant aspermatogenic and antitumor activities. In this work we show that the chemical conjugation of PEG to the RNase A C-dimer, and to the two RNase A trimers (NC-trimer and C-trimer) decreases the aspermatogenic activity of the oligomers while increasing their inhibitory activity on the growth of the human UB900518 amelanotic melanoma transplanted in athymic nude mice. Moreover, the PEG-conjugated RNase A oligomers are devoid, like the free oligomers, of any embryotoxic activity

    Cytotoxicity of Polyspermine-Ribonuclease A and Polyspermine-Dimeric Ribonuclease A

    No full text
    Polyspermine-ribonuclease A (PS-RNase A) and polyspermine-dimeric ribonuclease A (PS-dimeric RNase A) were prepared by cross-linking ribonuclease A or its covalently linked dimer to polyspermine (PS) using dimethyl suberimidate. The two RNase A derivatives were tested for a possible antitumor action. The in vitro and in vivo cytotoxic activity of PS-RNase A, although strong, is not higher than that known for free polyspermine. PS-dimeric RNase A, which was characterized by mass spectroscopy, titration of free amine groups, and enzymatic assays, proved instead to be a definitely more efficient antitumor agent, both in vitro and in vivo. This result could tentatively be explained in view of the importance of positive charges for ribonuclease activity, considering the higher basicity of PS-dimeric RNase A compared to that of PS-(monomeric)RNase A. It must be also taken into account that the dimeric RNase A moiety of PS-dimeric RNase A could evade the cytoplasmic ribonuclease inhibitor, which instead could trap the monomeric RNase A moiety of the other derivative. The two RNase A derivatives degrade poly(A)center dot poly(U) under conditions where native RNase A is inactive. The results of this work demonstrate once again the importance of positive charges for the functions of mammalian pancreatic type ribonucleases in general, in particular for RNase A derivatives, and the potential therapeutic use of the ribonuclease A derivatives
    corecore