27 research outputs found

    Impact of the Reticular Stress and Unfolded Protein Response on the inflammatory response in endometrial stromal cells

    Get PDF
    During decidualization, endometrial stromal cells undergo reticular stress (RS) and unfolded protein response (UPR), allowing the endoplasmic reticulum-expansion and immunomodulators production. Physiological RS generates the activation of sensing proteins, inflammasome activation and mature-IL-1β secretion, associated with pro-implantatory effects. We focus on the impact of RS and UPR on decidualized cells and whether they induce a physiological sterile inflammatory response through IL-1β production. Human endometrial stromal cell line (HESC) after decidualization treatment with MPA + dibutyryl-cAMP (Dec) increased the expression of RS-sensors (ATF6, PERK and IRE1α) and UPR markers (sXBP1 and CHOP) in comparison with Non-dec cells. Then we found increased NLRP3 expression in Dec cells compared with Non-dec cells. In fact STF-083010 (an IRE1α inhibitor) prevented this increase. Downstream, increased levels of active caspase-1 on Dec cells were detected by FAM-Flica Caspase-1 associated with an increase in IL-1β production. Moreover, the treatment with STF-083010 decreased the invasion index observed in Dec cells, evaluated by an in vitro model of implantation. In endometrial biopsies from recurrent spontaneous abortion patients an increased expression of IRE1α was found in comparison with fertile women; while recurrent implantation failure samples showed a lower expression of sXBP1, TXNIP and NLRP3 than fertile women, suggesting that RS/UPR tenors might condition endometrial receptivity.Fil: Grasso, Esteban Nicolas. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Gori, María Soledad. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Soczewski, Elizabeth Victoria. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Fernández, Laura del Carmen. Universidad de Buenos Aires; ArgentinaFil: Gallino, Lucila. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Vota, Daiana Marina. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Martínez, G.. Universidad de Buenos Aires; ArgentinaFil: Irigoyen, M.. Fertilidad San Isidro; ArgentinaFil: Ruhlmann, C.. Fertilidad San Isidro; ArgentinaFil: Lobo, T.F.. Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, Brazil; BrasilFil: Salamone, Gabriela Veronica. Universidade Federal de Sao Paulo;Fil: Mattar, Rosana Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Daher, S.. Universidade Federal de Sao Paulo; . Department of Obstetrics, Universidade Federal de São Paulo, São Paulo, Brazil; BrasilFil: Perez Leiros, Claudia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; ArgentinaFil: Ramhorst, Rosanna Elizabeth. Universidad de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales; Argentin

    Systematic Review of Potential Health Risks Posed by Pharmaceutical, Occupational and Consumer Exposures to Metallic and Nanoscale Aluminum, Aluminum Oxides, Aluminum Hydroxide and Its Soluble Salts

    Get PDF
    Aluminum (Al) is a ubiquitous substance encountered both naturally (as the third most abundant element) and intentionally (used in water, foods, pharmaceuticals, and vaccines); it is also present in ambient and occupational airborne particulates. Existing data underscore the importance of Al physical and chemical forms in relation to its uptake, accumulation, and systemic bioavailability. The present review represents a systematic examination of the peer-reviewed literature on the adverse health effects of Al materials published since a previous critical evaluation compiled by Krewski et al. (2007). Challenges encountered in carrying out the present review reflected the experimental use of different physical and chemical Al forms, different routes of administration, and different target organs in relation to the magnitude, frequency, and duration of exposure. Wide variations in diet can result in Al intakes that are often higher than the World Health Organization provisional tolerable weekly intake (PTWI), which is based on studies with Al citrate. Comparing daily dietary Al exposures on the basis of “total Al”assumes that gastrointestinal bioavailability for all dietary Al forms is equivalent to that for Al citrate, an approach that requires validation. Current occupational exposure limits (OELs) for identical Al substances vary as much as 15-fold. The toxicity of different Al forms depends in large measure on their physical behavior and relative solubility in water. The toxicity of soluble Al forms depends upon the delivered dose of Al+ 3 to target tissues. Trivalent Al reacts with water to produce bidentate superoxide coordination spheres [Al(O2)(H2O4)+ 2 and Al(H2O)6 + 3] that after complexation with O2•−, generate Al superoxides [Al(O2•)](H2O5)]+ 2. Semireduced AlO2• radicals deplete mitochondrial Fe and promote generation of H2O2, O2 • − and OH•. Thus, it is the Al+ 3-induced formation of oxygen radicals that accounts for the oxidative damage that leads to intrinsic apoptosis. In contrast, the toxicity of the insoluble Al oxides depends primarily on their behavior as particulates. Aluminum has been held responsible for human morbidity and mortality, but there is no consistent and convincing evidence to associate the Al found in food and drinking water at the doses and chemical forms presently consumed by people living in North America and Western Europe with increased risk for Alzheimer\u27s disease (AD). Neither is there clear evidence to show use of Al-containing underarm antiperspirants or cosmetics increases the risk of AD or breast cancer. Metallic Al, its oxides, and common Al salts have not been shown to be either genotoxic or carcinogenic. Aluminum exposures during neonatal and pediatric parenteral nutrition (PN) can impair bone mineralization and delay neurological development. Adverse effects to vaccines with Al adjuvants have occurred; however, recent controlled trials found that the immunologic response to certain vaccines with Al adjuvants was no greater, and in some cases less than, that after identical vaccination without Al adjuvants. The scientific literature on the adverse health effects of Al is extensive. Health risk assessments for Al must take into account individual co-factors (e.g., age, renal function, diet, gastric pH). Conclusions from the current review point to the need for refinement of the PTWI, reduction of Al contamination in PN solutions, justification for routine addition of Al to vaccines, and harmonization of OELs for Al substances

    Novel rare earth doped tellurite glasses for fiber lasers in the 2-micron wavelength region

    No full text
    In this paper Tm-doped tellurite glasses (75TeO2-20ZnO-5 Na2O, mol%) were prepared and characterized, and codoping with Yb was investigated in order to improve pump efficiency and wavelength emission range. Emission spectra and lifetime measurements were obtained by pumping Tm-doped tellurite glasses at 800 nm and Yb-Tm co-doped tellurite glasses at 980 nm, thus exploiting the Yb-Tm energy transfer mechanism. Highly Yb-doped Tm-tellurite glasses were investigated (Yb2O3 concentrations up to 5 wt%) and an increase in 3F4 lifetime with Yb2O3 concentrations higher than 3% was observed. This showed that high amounts of Yb do not affect lifetime of the metastable state, thus allowing investigation of lasers in this range of doping concentration

    The kidney, COVID-19, and the chemokine network : an intriguing trio

    No full text
    On December 30th 2019, some patients with pneumonia of unknown etiology were reported in the Program for Monitoring Emerging Diseases (ProMED), a program run by the International Society for Infectious Diseases (ISID), hypothesized to be related to subjects who had had contact with the seafood market in Wuhan, China. Chinese authorities instituted an emergency agency aimed at identifying the source of infection and potential biological pathogens. It was subsequently named by the World Committee on Virus Classification as 2019-nCoV (2019-novel coronavirus) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A number of studies have demonstrated that 2019-nCoV and the SARS-CoV shared the same cell entry receptor named angiotensin-converting enzyme 2 (ACE2). This is expressed in human tissues, not only in the respiratory epithelia, but also in the small intestines, heart, liver, and kidneys. Here, we examine the most recent findings on the effects of SARS-CoV-2 infection on kidney diseases, mainly acute kidney injury, and the potential role of the chemokine network
    corecore