372 research outputs found

    Blockchain-based Services in the Machinery and Plant Engineering Industry

    Get PDF
    A large number of product-accompanying services in the machinery and plant engineering industry is based on the cross-company exchange of data and information. By providing services, additional sales potential on the manufacturer side as well as far-reaching product and process advantages for appliers can be reached. However, the necessary cross-company exchange of information is nowadays limited due to a lack of trust in the interacting partner and the applicable existing technologies, which results in significant losses in the terms of business potential. The uncovering of this potential now seems to be made possible by the use of the Blockchain technology. Through the key factors security, immutability, transparency and decentralisation, it serves as an enabler for cross-company communication and product-accompanying services. The technological implementation of a Blockchain can take on a broad spectrum of attributes, which can lead to decisive restrictions for the execution of services. This justifies the necessity for a qualified and context-related assessment of service-types-individual specifications and the resulting requirements on the system. Within the scope of this paper, different types of product-accompanying services are identified and analysed regarding their requirements for a Blockchain-based machinery and plant connection. This can serve as a basis for a qualified and goal-oriented configuration of the Blockchain

    Inhaled treprostinil: a therapeutic review

    Get PDF
    Pulmonary arterial hypertension (PAH) is a life-threatening disease which, if untreated, leads to right ventricular failure and often death. Several effective therapies are now available for PAH, including endothelin receptor antagonists, phosphodiesterase-5 inhibitors, and prostacyclin analogs. The prostacyclin analog treprostinil has proven efficacious when delivered by subcutaneous or intravenous infusion, and most recently by inhalation. Inhaled treprostinil has been shown to be 64%–72% bioavailable in healthy volunteers. Pilot clinical studies have elucidated the acute hemodynamic effects and relative pulmonary selectivity of this agent, as well as established target dosing in PAH and nonoperable chronic thromboembolic PAH. Likewise, chronically administered inhaled treprostinil resulted in clinical and hemodynamic improvement. Both pilot studies confirmed a satisfactory safety profile in patients with PAH. The pivotal Phase III trial, TRIUMPH-I, demonstrated the efficacy and safety of inhaled treprostinil (target dose of 54 μg four times daily) in PAH patients added to background therapies of bosentan or sildenafil, as assessed by improvements in the primary endpoint, peak six-minute walk distance (median placebo-corrected treatment effect of 20 m), as well as select secondary endpoints. Inhaled treprostinil is approved by the US Food and Drug Administration for patients with World Health Organization Group I PAH to improve exercise ability. Studies establishing effectiveness included predominately patients with New York Heart Association functional class III symptoms and etiologies of idiopathic or heritable PAH (56%) or PAH associated with connective tissue diseases (33%)

    Short-term hemodynamic effects of apelin in patients with pulmonary arterial hypertension

    Get PDF
    Apelin agonism causes systemic vasodilatation and increased cardiac contractility in humans, and improves pulmonary arterial hypertension (PAH) in animal models. Here, the authors examined the short-term pulmonary hemodynamic effects of systemic apelin infusion in patients with PAH. In a double-blind randomized crossover study, 19 patients with PAH received intravenous (Pyr 1 )apelin-13 and matched saline placebo during invasive right heart catheterization. (Pyr 1 )apelin-13 infusion caused a reduction in pulmonary vascular resistance and increased cardiac output. This effect was accentuated in the subgroup of patients receiving concomitant phosphodiesterase type 5 inhibition. Apelin agonism is a novel potential therapeutic target for PAH. (Effects of Apelin on the Lung Circulation in Pulmonary Hypertension; NCT01457170

    Experimental evidence of PID effect on CIGS photovoltaic modules

    Get PDF
    As well known, potential induced degradation (PID) strongly decreases the performance of photovoltaic (PV) strings made of several crystalline silicon modules in hot and wet climates. In this paper, PID tests have been performed on commercial copper indium gallium selenide (CIGS) modules to investigate if this degradation may be remarkable also for CIGS technology. The tests have been conducted inside an environmental chamber where the temperature has been set to 85 \ub0C and the relative humidity to 85%. A negative potential of 1000 V has been applied to the PV modules in different configurations. The results demonstrate that there is a degradation affecting the maximum power point and the fill factor of the current\u2010voltage (I\u2010V) curves. In fact, the measurement of the I\u2010V curves at standard test condition show that all the parameters of the PV modules are influenced. This reveals that CIGS modules suffer PID under high negative voltage: this degradation occurs by different mechanisms, such as shunting, observed only in electroluminescence images of modules tested with negative bias. After the stress test, PID is partially recovered by applying a positive voltage of 1000 V and measuring the performance recovery of the degraded modules. The leakage currents flowing during the PID test in the chamber are measured with both positive and negative voltages; this analysis indicates a correlation between leakage current and power losses in case of negative potential

    Алгоритм обработки радиографических цифровых изображений сварных соединений на основе нейросетевого подхода

    Get PDF
    This paper details an integrated product process design model that represents process capabilities by a set of key indicators and allows for the design of products taking into account constraints set out by the process. The model is applied to Incremental sheet forming (ISF) processes and their variants. ISF processes have been developed over the past 20 years and have reached a state of development now allowing for a transition from scientific research to broader industrial application. ISF with its low part specific tooling represents a technology suitable for individualized production down to one-piece-flow. Hence, it might satisfy the growing demand for individualized products in the field of sheet metal production. However, an industrial use of ISF requires that general design rules are provided to designers to enable designs that are compatible with the capabilities of ISF. Today's product design typically is more suitable for stamping operations than for ISF whic h makes the fabrication of parts by ISF difficult and increases lead time and costs. Also, different variations of ISF processes exist that are based on different machines (industrial robots, CNC machines,...) and are characterized by different capabilities, e.g. in terms of accuracy. The objective of this work is the development of an integrated product process design model and its application to ISF. The capabilities of currently available ISF processes are determined and compared to the requirements of selected products from the automotive and aerospace industry

    Alternative Oxidase Attenuates Cigarette Smoke-induced Lung Dysfunction and Tissue Damage

    Get PDF
    Cigarette smoke (CS) exposure is the predominant risk factor for the development of chronic obstructive pulmonary disease (COPD) and the third leading cause of death worldwide. We aimed to elucidate whether mitochondrial respiratory inhibition and oxidative stress are triggers in its etiology. In different models of CS exposure, we investigated the effect onlung remodeling and cell signaling of restoring mitochondrial respiratory electron flow using alternative oxidase (AOX), which bypasses the cytochrome segment of the respiratory chain. AOX attenuated CS-induced lung tissue destruction and loss of function in mice exposed chronically to CS for 9 months. It preserved the cell viability of isolated mouse embryonic fibroblasts treated with CS condensate, limited the induction of apoptosis, and decreased the production of reactive oxygen species (ROS). In contrast, the earlyphase inflammatory response induced by acute CS exposure of mouse lung, i.e., infiltration by macrophages and neutrophils and adverse signaling, was unaffected. The use of AOX allowed us to obtain novel pathomechanistic insights into CS-induced cell damage,mitochondrial ROS production, and lung remodeling. Our findings implicate mitochondrial respiratory inhibition as a key pathogenicmechanism of CS toxicity in the lung. We propose AOX as a novel tool to study CS-related lung remodeling and potentially to counteract CS-induced ROS production and cell damage

    Polycomb Group Protein Bmi1 Is Required for Growth of RAF Driven Non-Small-Cell Lung Cancer

    Get PDF
    Background: We have previously described a RAF oncogene driven transgenic mouse model for non small cell lung cancer (NSCLC). Here we examine whether tumor initiation and growth requires the stem cell self-renewal factor Bmi1. Principal Findings: In order to evaluate Bmi1 function in NSCLC two founder lines that differ in incidence and latency of tumor formation were compared. Ablation of Bmi1 expression in both lines had a dramatically decreased tumor growth. As the line with shorter latency matched the life span of Bmi1 knock out mice, these mice were chosen for further study. The absence of Bmi1 did not decrease the number of tumor initiation in these mice as only the size and not the number of tumors decreased. Reduction in tumor growth resulted from an increase in cell death and decrease in cell cycle progression that corresponded with up-regulation of the p16 INK4a and p19 ARF. Significance: The data identifies Bmi1 as an important factor for expansion but not initiation of RAF driven NSCLC
    corecore