41 research outputs found

    Understanding insect foraging in complex habitats by comparing trophic levels: insights from specialist host-parasitoid-hyperparasitoid systems

    Get PDF
    Insects typically forage in complex habitats in which their resources are surrounded by non-resources. For herbivores, pollinators, parasitoids, and higher level predators research has focused on how specific trophic levels filter and integrate information from cues in their habitat to locate resources. However, these insights frequently build specific theory per trophic level and seldom across trophic levels. Here, we synthesize advances in understanding of insect foraging behavior in complex habitats by comparing trophic levels in specialist host-parasitoid-hyperparasitoid systems. We argue that resources may become less apparent to foraging insects when they are member of higher trophic levels and hypothesize that higher trophic level organisms require a larger number of steps in their foraging decisions. We identify important knowledge gaps of information integration strategies by insects that belong to higher trophic levels

    Gaia on-board metrology: basic angle and best focus

    Get PDF
    The Gaia payload ensures maximum passive stability using a single material, SiC, for most of its elements. Dedicated metrology instruments are, however, required to carry out two functions: monitoring the basic angle and refocusing the telescope. Two interferometers fed by the same laser are used to measure the basic angle changes at the level of ÎĽ\muas (prad, micropixel), which is the highest level ever achieved in space. Two Shack-Hartmann wavefront sensors, combined with an ad-hoc analysis of the scientific data are used to define and reach the overall best-focus. In this contribution, the systems, data analysis, procedures and performance achieved during commissioning are presentedComment: 18 pages, 14 figures. To appear in SPIE proceedings 9143-30. Space Telescopes and Instrumentation 2014: Optical, Infrared, and Millimeter Wav

    The aphid alarm pheromone (E)-beta-farnesene does not act as a cue for predators searching on a plant

    No full text

    Dealing with food shortage: larval dispersal behaviour and survival on non-prey food of the hoverfly Episyrphus balteatus

    No full text
    1. Predatory larvae often have to face food shortages during their development, and thus the ability to disperse and find new feeding sites is crucial for survival. However, the dispersal capacity of predatory larvae, the host finding cues employed, and their use of alternative food sources are largely unknown. These aspects of the foraging behaviour of the aphidophagous hoverfly (Episyrphus balteatus De Geer) larvae were investigated in the present study. 2. It was shown that these hoverfly larvae do not leave a plant as long as there are aphids available, but that dispersing larvae are able to find other aphid colonies in the field. Dispersing hoverfly larvae accumulated on large aphid colonies, but did not distinguish between different pea aphid race–plant species combinations. Large aphid colonies might be easier to detect because of intensified searching by hoverfly larvae following the encounter of aphid cues like honeydew that accumulate around large colonies. 3. It was further shown that non-prey food, such as diluted honey or pollen, was insufficient for hoverfly larvae to gain weight, but prolonged the survival of the larvae compared with unfed individuals. As soon as larvae were switched back to an aphid diet, they rapidly gained weight and some pupated after a few days. Although pupation and adult hatching rates were strongly reduced compared with hoverflies continuously fed with aphids, the consumption of non-prey food most probably increases the probability that hoverfly larvae find an aphid colony and complete their development

    Enemy-free space promotes maintenance of host races in an aphid species

    No full text

    Multi-camera field monitoring reveals costs of learning for parasitoid foraging behaviour

    No full text
    1. Dynamic conditions in nature have led to the evolution of behavioural traits that allow animals to use information on local circumstances and adjust their behaviour accordingly, for example through learning. Although learning can improve foraging efficiency, the learned information can become unreliable as the environment continues to change. This could lead to potential fitness costs when memories holding such unreliable information persist. Indeed, persistent unreliable memory was found to reduce the foraging efficiency of the parasitoid Cotesia glomerata under laboratory conditions. 2. Here, we evaluated the effect of such persistent unreliable memory on the foraging behaviour of C. glomerata in the field. This is a critical step in studies of foraging theory, since animal behaviour evolved under the complex conditions present in nature. 3. Existing methods provide little detail on how parasitoids interact with their environment in the field, therefore we developed a novel multi-camera system that allowed us to trace parasitoid foraging behaviour in detail. With this multi-camera system, we studied how persistent unreliable memory affected the foraging behaviour of C. glomerata when these memories led parasitoids to plants infested with non-host caterpillars in a semi-field set-up. 4. Our results demonstrate that persistent unreliable memory can lead to maladaptive foraging behaviour in C. glomerata under field conditions and increased the likelihood of oviposition in the non-host caterpillar Mamestra brassica. Furthermore, these time- and egg-related costs can be context dependent, since they rely on the plant species used. 5. These results provide us with new insight on how animals use previously obtained information in naturally complex and dynamic foraging situations and confirm that costs and benefits of learning depend on the environment animals forage in. Although behavioural studies of small animals in natural habitats remain challenging, novel methods such as our multi-camera system contribute to understanding the nuances of animal foraging behaviour
    corecore