1,198 research outputs found
Effects of riparian zone buffer widths on vegetation diversity in southern Appalachian headwater catchments
In mountainous areas such as the southern Appalachians USA, riparian zones are difficult to define. Vegetation is a commonly used riparian indicator and plays a key role in protecting water resources, but adequate knowledge of floristic responses to riparian disturbances is lacking. Our objective was to quantify changes in stand-level floristic diversity of riparian plant communities before (2004) and two, three, and seven years after shelterwood harvest using highlead cable-yarding and with differing no cut buffer widths of 0 m, 10 m, and 30 m distance from the stream edge. An unharvested reference stand was also studied for comparison. We examined: (1) differences among treatment sites using a mixed linear model with repeated measures; (2) multivariate relationships between ground-layer species composition and environmental variables (soil water content, light transmittance, tree basal area, shrub density, and distance from stream) using nonmetric multidimensional scaling; and (3) changes in species composition over time using a multi-response permutation procedure. We hypothesized that vegetation responses (i.e., changes in density, species composition, and diversity across the hillslope) will be greatest on harvest sites with an intermediate buffer width (10-m buffer) compared to more extreme (0-m buffer) and less extreme (30-m buffer and no-harvest reference) disturbance intensities. Harvesting initially reduced overstory density and basal area by 83% and 65%, respectively, in the 0-m buffer site; reduced by 50% and 74% in the 10-m buffer site; and reduced by 45% and 29% in the 30-m buffer site. Both the 0-m and 10-m buffer sites showed increased incident light variability across the hillslope after harvesting; whereas, there was no change in the 30-m and reference sites over time. We found significant changes in midstory and ground-layer vegetation in response to harvesting with the greatest responses on the 10-m buffer site, supporting our hypotheses that responses will be greatest on sites with intermediate disturbance. Ground-layer species composition differed significantly over time in the 0-m buffer and 10-m buffer sites (both P \u3c 0.0001), but did not change in the 30-m buffer and reference sites (both P \u3e 0.100). Average compositional dissimilarity increased after seven years, indicating greater within stand heterogeneity (species diversity) after harvesting. These vegetation recovery patterns provide useful information for evaluating management options in riparian zones in the southern Appalachians
HadISD: a quality-controlled global synoptic report database for selected variables at long-term stations from 1973--2011
[Abridged] This paper describes the creation of HadISD: an automatically
quality-controlled synoptic resolution dataset of temperature, dewpoint
temperature, sea-level pressure, wind speed, wind direction and cloud cover
from global weather stations for 1973--2011. The full dataset consists of over
6000 stations, with 3427 long-term stations deemed to have sufficient sampling
and quality for climate applications requiring sub-daily resolution. As with
other surface datasets, coverage is heavily skewed towards Northern Hemisphere
mid-latitudes.
The dataset is constructed from a large pre-existing ASCII flatfile data bank
that represents over a decade of substantial effort at data retrieval,
reformatting and provision. These raw data have had varying levels of quality
control applied to them by individual data providers. The work proceeded in
several steps: merging stations with multiple reporting identifiers;
reformatting to netCDF; quality control; and then filtering to form a final
dataset. Particular attention has been paid to maintaining true extreme values
where possible within an automated, objective process. Detailed validation has
been performed on a subset of global stations and also on UK data using known
extreme events to help finalise the QC tests. Further validation was performed
on a selection of extreme events world-wide (Hurricane Katrina in 2005, the
cold snap in Alaska in 1989 and heat waves in SE Australia in 2009). Although
the filtering has removed the poorest station records, no attempt has been made
to homogenise the data thus far. Hence non-climatic, time-varying errors may
still exist in many of the individual station records and care is needed in
inferring long-term trends from these data.
A version-control system has been constructed for this dataset to allow for
the clear documentation of any updates and corrections in the future.Comment: Published in Climate of the Past, www.clim-past.net/8/1649/2012/. 31
pages, 23 figures, 9 pages. For data see
http://www.metoffice.gov.uk/hadobs/hadis
Streamflow response to increasing precipitation extremes altered by forest management
Published (Publication status
High elevation watersheds in the southern Appalachians: Indicators of sensitivity to acidic deposition and the potential for restoration through liming
Southern Appalachian high elevation watersheds have deep rocky soils with high organic matter content,
different vegetation communities, and receive greater inputs of acidic deposition compared to low elevation sites within the region. Since the implementation of the Clean Air Act Amendment in the 1990s, concentrations of acidic anions in rainfall have declined. However, some high elevation streams continue to show signs of chronic to episodic acidity, where acid neutralizing capacity (ANC) ranges from 0 to
20 µeq L-1. We studied three 3rd order watersheds (North River in Cherokee National Forest, Santeetlah Creek in Nantahala National Forest, and North Fork of the French Broad in Pisgah National Forest) and selected four to six 1st order catchments within each watershed to represent a gradient in elevation (849–1526 m) and a range in acidic stream ANC values (11–50 leq L-1). Our objectives were to (1) identify biotic, physical and chemical catchment parameters that could be used as indices of stream ANC, pH and Ca:Al molar ratios and (2) estimate the lime required to restore catchments from the effects of excess acidity and increase base cation availability. We quantified each catchment’s biotic, physical, and chemical characteristics and collected stream, O-horizon, and mineral soil samples for chemical analysis seasonally for one year. Using repeated measures analysis, we examined variability in stream chemistry and catchment characteristics; we used a nested split-plot design to identify catchment characteristics that were correlated with stream chemistry. Watersheds differed significantly and the catchments sampled provided a wide range of stream chemical, biotic, physical and chemical characteristics. Variability in stream ANC, pH, and Ca:Al molar ratio were significantly correlated with catchment vegetation characteristics (basal area, tree height, and tree diameter) as well as O-horizon nitrogen and aluminum concentrations. Total soil carbon and calcium (an indicator of parent material), were significant
covariates for stream ANC, pH and Ca:Al molar ratios. Lime requirement estimates did not differ among watersheds but this data will help select catchments for future restoration and lime application studies. Not surprisingly, this work found many vegetation and chemical characteristics that were useful indicators of stream acidity. However, some expected relationships such as concentrations of mineral soil extractable Ca and SO4 were not significant. This suggests that an extensive test of these indicators across the southern Appalachians will be required to identify high elevation forested catchments that would benefit from restoration activities
Genetic algorithm dynamics on a rugged landscape
The genetic algorithm is an optimization procedure motivated by biological
evolution and is successfully applied to optimization problems in different
areas. A statistical mechanics model for its dynamics is proposed based on the
parent-child fitness correlation of the genetic operators, making it applicable
to general fitness landscapes. It is compared to a recent model based on a
maximum entropy ansatz. Finally it is applied to modeling the dynamics of a
genetic algorithm on the rugged fitness landscape of the NK model.Comment: 10 pages RevTeX, 4 figures PostScrip
Properties of Nucleon Resonances by means of a Genetic Algorithm
We present an optimization scheme that employs a Genetic Algorithm (GA) to
determine the properties of low-lying nucleon excitations within a realistic
photo-pion production model based upon an effective Lagrangian. We show that
with this modern optimization technique it is possible to reliably assess the
parameters of the resonances and the associated error bars as well as to
identify weaknesses in the models. To illustrate the problems the optimization
process may encounter, we provide results obtained for the nucleon resonances
(1230) and (1700). The former can be easily isolated and thus
has been studied in depth, while the latter is not as well known
experimentally.Comment: 12 pages, 10 figures, 3 tables. Minor correction
Future Dominance by Quaking Aspen Expected Following Short-Interval, Compounded Disturbance Interaction
The spatial overlap of multiple ecological disturbances in close succession has the capacity to alter trajectories of ecosystem recovery. Widespread bark beetle outbreaks and wildfire have affected many forests in western North America in the past two decades in areas of important habitat for native ungulates. Bark beetle outbreaks prior to fire may deplete seed supply of the host species, and differences in fire‐related regeneration strategies among species may shift the species composition and structure of the initial forest trajectory. Subsequent browsing of postfire tree regeneration by large ungulates, such as elk (Cervus canadensis), may limit the capacity for regeneration to grow above the browse zone to form the next forest canopy. Five stand‐replacing wildfires burned ~60,000 ha of subalpine forest that had previously been affected by severe ( \u3e90% mortality) outbreaks of spruce beetle (SB, Dendroctonus rufipennis) in Engelmann spruce (Picea engelmannii) in 2012–2013 in southwestern Colorado. Here we examine the drivers of variability in abundance of newly established conifer tree seedlings [spruce and subalpine fir (Abies lasiocarpa)] and resprouts of quaking aspen (Populus tremuloides) following the short‐interval sequence of SB outbreaks and wildfire (2–8 yr between SB outbreak and fire) at sites where we previously reconstructed severities of SB and fire. We then examine the implications of ungulate browsing for forest recovery. We found that abundances of postfire spruce seedling establishment decreased substantially in areas of severe SB outbreak. Prolific aspen resprouting in stands with live aspen prior to fire will favor an initial postfire forest trajectory dominated by aspen. However, preferential browsing of postfire aspen resprouts by ungulates will likely slow the rate of canopy recovery but browsing is unlikely to alter the species composition of the future forest canopy. Collectively, our results show that SB outbreak prior to fire increases the vulnerability of spruce–fir forests to shifts in forest type (conifer to aspen) and physiognomic community type (conifer forest to non‐forest). By identifying where compounded disturbance interactions are likely to limit recovery of forests or tree species, our findings are useful for developing adaptive management strategies in the context of warming climate and shifting disturbance regimes
- …