39 research outputs found

    Higher whole-blood selenium is associated with improved immune responses in footrot-affected sheep

    Get PDF
    We reported previously that sheep affected with footrot (FR) have lower whole-blood selenium (WB-Se) concentrations and that parenteral Se-supplementation in conjunction with routine control practices accelerates recovery from FR. The purpose of this follow-up study was to investigate the mechanisms by which Se facilitates recovery from FR. Sheep affected with FR (n = 38) were injected monthly for 15 months with either 5 mg Se (FR-Se) or saline (FR-Sal), whereas 19 healthy sheep received no treatment. Adaptive immune function was evaluated after 3 months of Se supplementation by immunizing all sheep with a novel protein, keyhole limpet hemocyanin (KLH). The antibody titer and delayed-type hypersensitivity (DTH) skin test to KLH were used to assess humoral immunity and cell-mediated immunity, respectively. Innate immunity was evaluated after 3 months of Se supplementation by measuring intradermal responses to histamine 30 min after injection compared to KLH and saline, and after 15 months of Se supplementation by isolating neutrophils and measuring their bacterial killing ability and relative abundance of mRNA for genes associated with neutrophil migration. Compared to healthy sheep, immune responses to a novel protein were suppressed in FR-affected sheep with smaller decreases in FR-affected sheep that received Se or had WB-Se concentrations above 250 ng/mL at the time of the immune assays. Neutrophil function was suppressed in FR-affected sheep, but was not changed by Se supplementation or WB-Se status. Sheep FR is associated with depressed immune responses to a novel protein, which may be partly restored by improving WB-Se status (> 250 ng/mL)

    Dietary Enrichment with 20% Fish Oil Decreases Mucus Production and the Inflammatory Response in Mice with Ovalbumin-Induced Allergic Lung Inflammation.

    No full text
    The prevalence of asthma has increased in recent decades, which may be related to higher dietary intake of (n-6) polyunsaturated fatty acids (PUFA) and lower intake of (n-3) PUFA, e.g., those contained in fish oil. The objective of this study was to determine if dietary PUFA enrichment decreases mucus production or the inflammatory response associated with ovalbumin (OVA)-induced allergic lung inflammation. Mice (n = 10/group) were fed control, 20% fish oil, or 20% corn oil enriched diets for a total of 12 weeks. At 8 and 10 weeks, mice were given an intraperitoneal injection of saline (10 control-fed mice) or OVA (30 remaining mice). Once at 10 weeks and on 3 consecutive days during week 12, mice were challenged by nebulizing with saline or OVA. Mice were euthanized 24 hours after the last challenge and blood was collected for plasma FA analysis. Bronchoalveolar lavage (BAL) fluid was collected to determine cell composition and Th2-type cytokine (IL-4, IL-13) concentrations. Periodic acid-Schiff (PAS) + mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue were quantified using morphometric analysis. Relative abundance of mRNA for mucin (Muc4, Muc5ac, and Muc5b) and Th2-type cytokine (IL-4, IL-5, and IL-13) genes were compared with ß-actin by qPCR. Supplementation with either corn oil or fish oil effectively altered plasma FA profiles towards more (n-6) FA or (n-3) FA, respectively (P < 0.0001). Sensitization and challenge with OVA increased the proportion of neutrophils, lymphocytes, and eosinophils, and decreased the proportion of macrophages and concentrations of IL-13 in BAL fluid; increased the percentage of PAS+ mucus-producing cells and CD45+ inflammatory cell infiltrates in lung tissue; and increased gene expression of mucins (Muc4, Muc5ac, and Muc5b) and Th2-type cytokines (IL-5 and IL-13) in lung tissue of control-fed mice. Dietary PUFA reversed the increase in PAS+ mucus-producing cells (P = 0.003). In addition, dietary enrichment with fish oil attenuated the percentage of CD45+ inflammatory cell infiltrates in lung tissue, and increased Muc4 and Muc 5b gene expression compared with OVA-sensitized and challenged control mice. In conclusion, dietary enrichment with either (n-3) or (n-6) PUFA decreased mucus production in lung tissues of OVA-sensitized and challenged mice. More specifically, enrichment with dietary (n-3) PUFA decreased CD45+ inflammatory cell infiltrates, thus inducing potentially beneficial changes in lung tissue of OVA-sensitized and challenged mice

    Effect of feeding selenium-fertilized alfalfa hay on performance of weaned beef calves.

    Get PDF
    Selenium (Se) is an essential micronutrient in cattle, and Se-deficiency can affect morbidity and mortality. Calves may have greater Se requirements during periods of stress, such as during the transitional period between weaning and movement to a feedlot. Previously, we showed that feeding Se-fertilized forage increases whole-blood (WB) Se concentrations in mature beef cows. Our current objective was to test whether feeding Se-fertilized forage increases WB-Se concentrations and performance in weaned beef calves. Recently weaned beef calves (n = 60) were blocked by body weight, randomly assigned to 4 groups, and fed an alfalfa hay based diet for 7 wk, which was harvested from fields fertilized with sodium-selenate at a rate of 0, 22.5, 45.0, or 89.9 g Se/ha. Blood samples were collected weekly and analyzed for WB-Se concentrations. Body weight and health status of calves were monitored during the 7-wk feeding trial. Increasing application rates of Se fertilizer resulted in increased alfalfa hay Se content for that cutting of alfalfa (0.07, 0.95, 1.55, 3.26 mg Se/kg dry matter for Se application rates of 0, 22.5, 45.0, or 89.9 g Se/ha, respectively). Feeding Se-fertilized alfalfa hay during the 7-wk preconditioning period increased WB-Se concentrations (P Linear<0.001) and body weights (P Linear = 0.002) depending upon the Se-application rate. Based upon our results we suggest that soil-Se fertilization is a potential management tool to improve Se-status and performance in weaned calves in areas with low soil-Se concentrations

    The effect of Se-source and dosage on sheep requiring oxytetracyline treatment.

    No full text
    <p>Foot rot severity was assessed after 0, 20, 28, 40, and 60 wk of Se supplementation in ewes receiving no Se treatment, Na-selenate at a dosage rate of 8.95 mg Se/wk per ewe, or Na-selenite and Se-Yeast at 4.9, 14.7, or 24.5 mg Se/wk per ewe for 62 wk. If a sheep had one foot with a score of 4, or one foot with a score of 3 and a second foot with a score of 2 or greater, or if all 4 feet had FR, then 20 mg/kg oxytetracycline was administered subcutaneously (Liquamycin LA-200; Pfizer Animal Health, Exton, PA) at the 28- and 40-wk foot trimming sessions. No significant differences in parental oxytetracycline treatment were observed for individual treatment groups at 28 wk; however; more ewes with supranutritional Na-selenite treatment were treated with oxytetracyline than ewes receiving the lowest Na-selenite dosage (<i>P</i> = 0.05). At 40 wk, more ewes receiving Na-selenite at the highest dosage had to be treated with oxytetracycline than ewes receiving no Se, Na-selenite at both lower dosages, or Se-yeast at 14.5 mg/wk (all <i>P</i> ≤ 0.05).</p

    BAL fluid cytology proportions for mice fed (n-3) or (n-6) PUFA enriched foods for 8 weeks and then sensitized and challenged with OVA for an additional 4 weeks compared with mice fed control food that were sensitized and challenged with saline (Negative Control) or OVA (Positive Control)<sup>1</sup>.

    No full text
    <p>BAL fluid cytology proportions for mice fed (n-3) or (n-6) PUFA enriched foods for 8 weeks and then sensitized and challenged with OVA for an additional 4 weeks compared with mice fed control food that were sensitized and challenged with saline (Negative Control) or OVA (Positive Control)<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0163819#t004fn001" target="_blank"><sup>1</sup></a>.</p
    corecore