78 research outputs found

    Polymeric Micelles for Breast Cancer Therapy: Recent Updates, Clinical Translation and Regulatory Considerations

    Get PDF
    With the growing burden of cancer, parallel advancements in anticancer nanotechnological solutions have been witnessed. Among the different types of cancers, breast cancer accounts for approximately 25% and leads to 15% of deaths. Nanomedicine and its allied fields of material science have revolutionized the science of medicine in the 21st century. Novel treatments have paved the way for improved drug delivery systems that have better efficacy and reduced adverse effects. A variety of nanoformulations using lipids, polymers, inorganic, and peptide-based nanomedicines with various functionalities are being synthesized. Thus, elaborate knowledge of these intelligent nanomedicines for highly promising drug delivery systems is of prime importance. Polymeric micelles (PMs) are generally easy to prepare with good solubilization properties; hence, they appear to be an attractive alternative over the other nanosystems. Although an overall perspective of PM systems has been presented in recent reviews, a brief discussion has been provided on PMs for breast cancer. This review provides a discussion of the state-of-the-art PMs together with the most recent advances in this field. Furthermore, special emphasis is placed on regulatory guidelines, clinical translation potential, and future aspects of the use of PMs in breast cancer treatment. The recent developments in micelle formulations look promising, with regulatory guidelines that are now more clearly defined; hence, we anticipate early clinical translation in the near future

    COVAX-19Ⓡ Vaccine: Completely blocks virus transmission to non-immune individuals

    No full text
    Various vaccine platforms are geared against COVID-19 vaccine development to produce immunogens in cells. To design a recombinant protein-based COVID-19 vaccine, Vaxine pty Ltd used computer models of the spike protein and its human receptor, ACE2, to identify how the virus infects human cells. Based on this, the COVAX-19® vaccine is synthesized. It does reduce not only COVID-19 disease but also blocks virus shedding and transmission. Researchers are optimistic that this vaccine candidate could be clinically available soon with sufficient vaccine efficacy and a considerable amount of reduction in vaccination-related side effects

    Inhalable vaccines: can they help control pandemics?

    Get PDF
    The emergence of a new coronavirus presents a huge risk to public health worldwide and has spread widely amongst the human population. Since its emergence, the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) is frequently evolving by mutation and genetic recombination to give rise to new viral variants. These emerging variants pose a challenge to existing COVID-19 management strategies and vaccine efficacy. Interruption of viral spread is required as the merging variants pose higher transmissibility than the previous ones. To achieve this, local protection of the respiratory tract with immunity is essential. Here, we advocate the use of pulmonary/inhalable vaccines to achieve this goal

    Cancer nanovaccines: nanomaterials and clinical perspectives

    No full text
    Cancer nanovaccines represent a promising frontier in cancer immunotherapy, utilizing nanotechnology to augment traditional vaccine efficacy. This review comprehensively examines the current state-of-the-art in cancer nanovaccine development, elucidating innovative strategies and technologies employed in their design. It explores both preclinical and clinical advancements, emphasizing key studies demonstrating their potential to elicit robust anti-tumor immune responses. The study encompasses various facets, including integrating biomaterial-based nanocarriers for antigen delivery, adjuvant selection, and the impact of nanoscale properties on vaccine performance. Detailed insights into the complex interplay between the tumor microenvironment and nanovaccine responses are provided, highlighting challenges and opportunities in optimizing therapeutic outcomes. Additionally, the study presents a thorough analysis of ongoing clinical trials, presenting a snapshot of the current clinical landscape. By curating the latest scientific findings and clinical developments, this study aims to serve as a comprehensive resource for researchers and clinicians engaged in advancing cancer immunotherapy. Integrating nanotechnology into vaccine design holds immense promise for revolutionizing cancer treatment paradigms, and this review provides a timely update on the evolving landscape of cancer nanovaccines.<br/

    mRNA-Based Vaccines and Therapeutics for COVID-19 and Future Pandemics

    No full text
    An unheard mobilization of resources to find SARS-CoV-2 vaccines and therapies has been sparked by the COVID-19 pandemic. Two years ago, COVID-19’s launch propelled mRNA-based technologies into the public eye. Knowledge gained from mRNA technology used to combat COVID-19 is assisting in the creation of treatments and vaccines to treat existing illnesses and may avert pandemics in the future. Exploiting the capacity of mRNA to create therapeutic proteins to impede or treat a variety of illnesses, including cancer, is the main goal of the quickly developing, highly multidisciplinary field of biomedicine. In this review, we explore the potential of mRNA as a vaccine and therapeutic using current research findings
    • …
    corecore