29 research outputs found

    Modelling deformation-induced martensite transformation in high-carbon steels

    Get PDF
    The transformation behaviour of retained austenite in steels is known to differ according to chemical composition and other microstructural attributes. Earlier research indicated that austenite in high-carbon steels transforms into martensite only when the applied stress exceeds a critical value, contrary to low-carbon steels where transformation occurs in the early stages of deformation. Although transformation models have been proposed, most are optimised for low-carbon steels. Here, we propose physics-based models applied to high-carbon steels to overcome previous limitations. The models have fewer free parameters (4) compared to previous approaches (6), exhibiting improvements in the numerical and physical interpretation of the austenite transformation process. We envision the use of these models as tools for alloy design, also highlighting their scientific and technological value

    Material characterization and finite element modelling of cyclic plasticity behavior for 304 stainless steel using a crystal plasticity model

    Get PDF
    Low cycle fatigue tests were carried out for a 304 stainless steel at room temperature. A series of experimental characterisations, including SEM, TEM, and XRD were conducted for the 304 stainless steel to facilitate the understanding of the mechanical responses and microstructural behaviour of the material under cyclic loading including nanostructure, crystal structure and the fractured surface. The crystal plasticity finite element method (CPFEM) is a powerful tool for studying the microstructure influence on the cyclic plasticity behaviour. This method was incorporated into the commercially available software ABAQUS by coding a UMAT user subroutine. Based on the results of fatigue tests and material characterisation, the full set of material constants for the crystal plasticity model was determined. The CPFEM framework used in this paper can be used to predict the crack initiation sites based on the local accumulated plastic deformation and local plastic dissipation energy criterion, but with limitation in predicting the crack initiation caused by precipitates

    A crystal plasticity based methodology for modeling fatigue crack initiation and estimating material coefficients to predict fatigue crack initiation life at micro, nano and macro scales

    No full text
    Fatigue failure is a dominant mechanism that governs the failure of components and structures in many engineering applications. In conventional engineering applications due to the design specifications, a significant proportion of the fatigue life is spent in the crack initiation phase. In spite of the large number of works addressing fatigue life modeling, the problem of modeling crack initiation life still remains a major challenge. In this work, a novel computational methodology based upon crystal plasticity formulations has been developed to predict crack initiation life at macro, micro and nano length scales. The crystal plasticity based constitutive model has been employed to model the micromechanical deformation and damage accumulation under cyclic loading in polycrystalline metals. This work provides a first of its kind, fundamental basis for employing crystal plasticity formulations for evaluating a quantifiable estimate of fatigue crack initiation life. A semi-empirical energy based fatigue crack initiation criterion s employed to allow for accurate modeling of the underlying microstructural phenomenon leading to the initiation of cracks at different material length scales. The results of the fatigue crack initiation life prediction in case of polycrystalline metals such as Copper and Nickel demonstrated that the crack initiation life prediction using the proposed methodology yielded an improvement of more than 30% in comparison to the existing continuum methodologies for fatigue crack initiation prediction and more than 80% improvement compared to the existing analytical models. The computational methodology developed in this work also provides a first of its kind technique to evaluate the fatigue crack initiation coefficient in the form of energy dissipation coefficient that can be used at varying length scales. The methodology and the computational framework proposed in this work, are developed such that experimental inputs are used to improve computational model performance and the closed loop feedback system enables the modeling of micro, macro and nano scale mechanisms very well. The computational models for the representative material microstructures were built by creating randomized Voronoi tessellations of the representative region that allows for reducing the need for extensive testing which is the major challenge in crack initiation predictions in engineering structures. In order to facilitate the use of the model for engineering applications, an analytical expression for fatigue crack initiation prediction using macro-scale loading conditions has been developed. The analytical model developed for fatigue crack initiation using macro-scale conditions has been validated using benchmark data in the literature to allow for the identification of the material co-efficients necessary to predict the fatigue crack initiation life while considering surface finish, grain size and crack size. The computational modeling and prediction of fatigue crack initiation life in nanostructured graphene reinforced materials is also studied by creating an effective interface method based computational model. The results of the model prediction showed good agreement with the trend of fatigue crack initiation life compared with the experimental results. This work lays the foundation for linking micromechanical plastic deformation to the nano-scale phenomenon while simultaneously providing a tool for engineers predicting crack initiation in macro-scale applications

    Finite Element Analysis of the Effect of Overlapping Impacts of Laser Shock Peening Within Annealed AISI 1053 Steel

    Full text link
    Laser shock peening is a surface treatment technique similar to conventional shot peening. The laser induced plasma causes plastic deformations and compressive residual stresses in materials which are useful for developing improved properties in the fields of fatigue, wear or stress corrosion cracking. Finite element method is an efficient tool to predict the mechanical effects and the deformations caused due to laser shock peening, which otherwise are difficult to calculate due to the severe pressure imparted in a very short period of time. This paper presents the calculations performed using ABAQUS, for the simulation of multiple laser shock processing in order to evaluate the residual stress and the deformation of the material. A study of the effect of multiple laser shocks and their extent of overlap on the affected depths and the tensile and compressive residual stresses has been discussed. FEM calculations of residual stress fields and extent of surface deformation in annealed AISI 1053 steel has been investigated along with a study of the distribution of tensile and compressive residual stresses due to the difference in the extent of overlap of the multiple shocks.</jats:p

    Fatigue Crack Initiation of Metals Fabricated by Additive Manufacturing—A Crystal Plasticity Energy-Based Approach to IN718 Life Prediction

    No full text
    There has been a long-standing need in the marketplace for the economic production of small lots of components that have complex geometry. A potential solution is additive manufacturing (AM). AM is a manufacturing process that adds material from the bottom up. It has the distinct advantages of low preparation costs and a high geometric creation capability. However, the wide range of industrial processing conditions results in large variations in the fatigue lives of metal components fabricated using AM. One of the main reasons for this variation of fatigue lives is differences in microstructure. Our methodology incorporated a crystal plasticity finite element model (CPFEM) that was able to simulate a stress–strain response based on a set of randomly generated representative volume elements. The main advantage of this approach was that the model determined the elastic constants (C11, C12, and C44), the critical resolved shear stress (g0), and the strain hardening modulus (h0) as a function of microstructure. These coefficients were determined based on the stress–strain relationships derived from the tensile test results. By incorporating the effect of microstructure on the elastic constants (C), the shear stress amplitude (Δτ2) can be computed more accurately. In addition, by considering the effect of microstructure on the critical resolved shear stress (g0) and the strain hardening modulus (h0), the localized dislocation slip and plastic slip per cycle (Δγp2) can be precisely calculated by CPFEM. This study represents a major advance in fatigue research by modeling the crack initiation life of materials fabricated by AM with different microstructures. It is also a tool for designing laser AM processes that can fabricate components that meet the fatigue requirements of specific applications.</jats:p

    A Methodology for Incorporating the Effect of Grain Size on the Energy Efficiency Coefficient for Fatigue Crack Initiation Estimation in Polycrystalline Metal

    No full text
    Estimating fatigue crack initiation of applied loading is challenging due to the large number of individual entities within a microstructure that could affect the accumulation of dislocations. In order to improve the prediction accuracy of fatigue crack initiation models, it is essential to accurately compute the energy dissipated into the microstructure per fatigue loading cycle. The extent of the energy dissipated within the microstructure as a fraction of the overall energy imparted by loading has previously been defined as the ‘energy efficiency coefficient’. This work studied the energy efficiency coefficient as a factor in the measurement of accumulated plastic strain energy stored at the crack initiation site during cyclic loading. In particular, the crystal plasticity constitutive formulation was known as ’length scale independent’ previously. As a result, a semi-empirical approach was presented whereby the potential effect of grain size can be accounted for without the use of a strain gradient plasticity approach. The randomized representative volume elements were created based on the experimental analysis of grain size distribution. The work was aimed at capturing some of the effects of grain size and utilizing them to complete a semi-empirical estimation of crack initiation in polycrystalline materials. The computational methodology ensured the representative of microstructural properties, including the elastic constant and critical resolved shear stress via appreciable fit achieved with the empirical tensile test results. Crystal plasticity finite element modeling was incorporated into a finite element code to estimate the potential for crack initiation. The energy efficiency coefficient was computed for a class of material with grain size to C11000 electrolytic tough pitch (ETP) copper. This methodology can improve fatigue crack initiation life estimation and advance the fundamental study of energy efficiency coefficient during fatigue crack initiation.</jats:p

    Fatigue Crack Initiation of Metals Fabricated by Additive Manufacturing—A Crystal Plasticity Energy-Based Approach to IN718 Life Prediction

    No full text
    There has been a long-standing need in the marketplace for the economic production of small lots of components that have complex geometry. A potential solution is additive manufacturing (AM). AM is a manufacturing process that adds material from the bottom up. It has the distinct advantages of low preparation costs and a high geometric creation capability. However, the wide range of industrial processing conditions results in large variations in the fatigue lives of metal components fabricated using AM. One of the main reasons for this variation of fatigue lives is differences in microstructure. Our methodology incorporated a crystal plasticity finite element model (CPFEM) that was able to simulate a stress&ndash;strain response based on a set of randomly generated representative volume elements. The main advantage of this approach was that the model determined the elastic constants (C11, C12, and C44), the critical resolved shear stress (g0), and the strain hardening modulus (h0) as a function of microstructure. These coefficients were determined based on the stress&ndash;strain relationships derived from the tensile test results. By incorporating the effect of microstructure on the elastic constants (C), the shear stress amplitude (&Delta;&tau;2) can be computed more accurately. In addition, by considering the effect of microstructure on the critical resolved shear stress (g0) and the strain hardening modulus (h0), the localized dislocation slip and plastic slip per cycle (&Delta;&gamma;p2) can be precisely calculated by CPFEM. This study represents a major advance in fatigue research by modeling the crack initiation life of materials fabricated by AM with different microstructures. It is also a tool for designing laser AM processes that can fabricate components that meet the fatigue requirements of specific applications
    corecore