134 research outputs found

    Synthetic peptides, nucleic acids and molecular probes to study ADP-Ribosylation

    Get PDF
    This thesis presents the first synthetic peptides ADP-ribosylated on serine, threonine, tyrosine, arginine and cysteine. Besides synthetic peptides, this thesis discusses the first synthetic route towards ADP-ribosylated nucleic acids. Furthermore, two photoaffinity probes for PARP1 have been developed and assessed in living cells and two activity based probes have been synthesized, designed for CD38.Bio-organic Synthesi

    Left ventricular high frame rate echo-particle image velocimetry: clinical application and comparison with conventional imaging

    Get PDF
    BACKGROUND: Echo-Particle Image Velocimetry (echoPIV) tracks speckle patterns from ultrasound contrast agent(UCA), being less angle-sensitive than colour Doppler. High frame rate (HFR) echoPIV enables tracking of high velocity flow in the left ventricle (LV). We aimed to demonstrate the potential clinical use of HFR echoPIV and investigate the feasibility and accuracy in patients. METHODS: Nineteen patients admitted for heart failure were included. HFR contrast images were acquired from an apical long axis view (ALAX), using a fully-programmable ultrasound system. A clinical UCA was continuously infused with a dedicated pump. Additionally, echocardiographic images were obtained using a clinical system, including LV contrast-enhanced images and pulsed-wave (PW) Doppler of the LV inflow and outflow in ALAX. 11 patients underwent CMR and 4 cardiac CT as clinically indicated. These CMR and CT images were used as reference. In 10 patients with good echoPIV tracking and reference imaging, the intracavitary flow was compared between echoPIV, conventional and UCA echocardiography. RESULTS: EchoPIV tracking quality was good in 12/19 (63%), moderate in 2/19 (10%) and poor in 5/19 (26%) subjects. EchoPIV could determine inflow velocity in 17/19 (89%), and outflow in 14/19 (74%) patients. The correlation of echoPIV and PW Doppler was good for the inflow (R(2) = 0.77 to PW peak; R(2) = 0.80 PW mean velocity) and moderate for the outflow (R(2) = 0.54 to PW peak; R(2) = 0.44 to PW mean velocity), with a tendency for echoPIV to underestimate PW velocities. In selected patients, echoPIV was able in a single acquisition to demonstrate flow patterns which required multiple interrogations with classical echocardiography. Those flow patterns could also be linked to anatomical abnormalities as seen in CMR or CT. CONCLUSION: HFR echoPIV tracks multidirectional and complex flow patterns which are unapparent with conventional echocardiography, while having comparable feasibility. EchoPIV tends to underestimate flow velocities as compared to PW Doppler. It has the potential to provide in one acquisition all the functional information obtained by conventional imaging, overcoming the angle dependency of Doppler and low frame rate of classical contrast imaging. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12947-022-00283-4

    Kinome-wide analysis of the effect of statins in colorectal cancer

    Get PDF
    Background Epidemiological studies and meta-analyses show an association between statin use and a reduced incidence of colorectal cancer (CRC). We have shown that statins act on CRC through bone morphogenetic protein (BMP) signalling, but the exact cellular targets and underlying mechanism of statin action remain elusive. In this study, we set out to assess the influence of statins on global cancer cell signalling by performing an array-based kinase assay using immobilised kinase substrates spanning the entire human kinome. Methods CRC cells with or without Lovastatin treatment were used for kinome analysis. Findings on kinome arrays were further confirmed by immunoblotting with activity-specific antibodies. Experiments in different CRC cell lines using immunoblotting, siRNA-mediated knockdown and treatment with specific BMP inhibitor Noggin were performed. The relevance of in vitro findings was confirmed in xenografts and in CRC patients treated with Simvastatin. Results Kinome analysis can distinguish between non-specific, toxic effects caused by 10 mu M of Lovastatin and specific effects on cell signalling caused by 2 mu M Lovastatin. Statins induce upregulation of PTEN activity leading to downregulation of the PI3K/Akt/mTOR signalling. Treatment of cells with the specific BMP inhibitor Noggin as well as PTEN knockdown and transfection of cells with a constitutively active form of AKT abolishes the effect of Lovastatin on mTOR phosphorylation. Experiments in xenografts and in patients treated with Simvastatin confirm statin-mediated BMP pathway activation, activation of PTEN and downregulation of mTOR signalling. Conclusions Statins induce BMP-specific activation of PTEN and inhibition of PI3K/Akt/mTOR signalling in CRC

    4-thioribose analogues of adenosine diphosphate ribose (ADPr) peptides

    Get PDF
    This is the final version. Available from the American Chemical Society via the DOI in this record. Data Availability Statement: The data underlying this study are available in the published article and its Supporting Information.Adenosine diphosphate (ADP) ribosylation is an important post-translational modification (PTM) that plays a role in a wide variety of cellular processes. To study the enzymes responsible for the establishment, recognition, and removal of this PTM, stable analogues are invaluable tools. We describe the design and synthesis of a 4-thioribosyl APRr peptide that has been assembled by solid phase synthesis. The key 4-thioribosyl serine building block was obtained in a stereoselective glycosylation reaction using an alkynylbenzoate 4-thioribosyl donor.Biotechnology and Biological Sciences Research CouncilWellcome TrustWellcome TrustOvarian Cancer Research AllianceNetherlands Organization for Scientific Research (NWO

    Chemical synthesis of linear ADP-ribose oligomers up to pentamer and their binding to the oncogenic helicase ALC1

    Get PDF
    ADP-ribosylation is a pivotal post-translational modification that mediates various important cellular processes producing negatively charged biopolymer, poly (ADP-ribose), the functions of which need further elucidation. Toward this end, the availability of well-defined ADP-ribose (ADPr) oligomers in sufficient quantities is a necessity. In this work, we demonstrate the chemical synthesis of linear ADPr oligomers of defined, increasing length using a modified solid phase synthesis method. An advanced phosphoramidite building block temporarily protected with the base sensitive Fm-group was designed and implemented in the repeating pyrophosphate formation via a P(v)-P(iii) coupling procedure on Tentagel solid support. Linear ADPr oligomers up to a pentamer were successfully synthesized and their affinity for the poly-(ADP-ribose)-binding macrodomain of the human oncogenic helicase and chromatin remodeling enzyme ALC1 was determined. Our data reveal a length-dependent binding manner of the nucleic acid, with larger ADPr oligomers exhibiting higher binding enthalpies for ALC1, illustrating how the activity of this molecular machine is gated by PAR.Bio-organic Synthesi

    Protein and RNA ADP-ribosylation detection is influenced by sample preparation and reagents used

    Get PDF
    The modification of substrates with ADP-ribose (ADPr) is im-portant in, for example, antiviral immunity and cancer. Recently, several reagents were developed to detect ADP-ribosylation; however, it is unknown whether they recognise ADPr, specific amino acid-ADPr linkages, or ADPr with the surrounding protein backbone. We first optimised methods to prepare extracts con-taining ADPr-proteins and observe that depending on the amino acid modified, the modification is heatlabile. We tested the re-activity of available reagents with diverse ADP-ribosylated pro-tein and RNA substrates and observed that not all reagents are equally suited for all substrates. Next, we determined cross -reactivity with adenylylated RNA, AMPylated proteins, and me-tabolites, including NADH, which are detected by some reagents. Lastly, we analysed ADP-ribosylation using confocal microscopy, where depending on the fixation method, either mitochondrion, nucleus, or nucleolus is stained. This study allows future work dissecting the function of ADP-ribosylation in cells, both on protein and on RNA substrates, as we optimised sample prepa-ration methods and have defined the reagents suitable for specific methods and substrates.Bio-organic Synthesi

    Olaparib based photo-affinity probes for PARP-1 detection in living cells

    Get PDF
    The poly-ADP-ribose polymerase (PARP) is a protein from the family of ADP-ribosyltransferases that catalyzes poly adenosine diphosphate ribose (ADPR) formation in order to attract the DNA repair machinery to DNA damage sites. Inhibition of PARP activity by olaparib can cause cell death which is of clinical relevance in some tumor types. This demonstrates that quantification of PARP activity in the context of living cells is of great importance. In this work we present the design, synthesis and biological evaluation of photo-activatable affinity probes inspired by the olaparib molecule which are equipped with a diazirine for covalent attachment upon activation by UV light and a ligation handle for the addition of a reporter group of choice. SDS-PAGE, western blotting and label-free LC-MS/MS quantification analysis show that the probes target the PARP-1 protein and are selectively outcompeted by olaparib suggesting binding in the same enzymatic pocket.Bio-organic SynthesisMolecular Physiolog
    • …
    corecore