28 research outputs found

    Elemental abundances in corotating events

    Get PDF
    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) reported was remarkably constant at a value (22 + or - 5) equal to that in the solar wind (32 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results from a similar study approximately 11 years (i.e., one solar cycle) later are reported. Corotating events were identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. In addition, other corotating events were examined at times when solar flare events could have injected particles into the corresponding corotating interaction regions. It was found that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events

    Elemental abundances in corotating events

    Get PDF
    Large, persistent solar-wind streams in 1973 and 1974 produced corotating interaction regions which accelerated particles to energies of a few MeV/nucleon. The proton to helium ratio (H/He) was remarkably constant at a value (22 + or 5) equal to that in the solar wind (21 + or - 3), suggesting that particles were being accelerated directly out of the solar wind. Preliminary results were presented from a similar study approximately 11 years (i.e., one solar cycle) later. Corotating events have been identified by surveying the solar wind data, energetic particle time-histories and anisotropies. This data was all obtained from the ISEE-3/ICE spacecraft. These events also show H/He ratios similar to that in the solar wind. It is flund that in these cases there is evidence for H/He ratios which are significantly different from that of the solar wind but which are consistent with the range of values found in solar flare events

    Two classes of solar energetic particle events associated with impulsive and long duration soft X-ray flares

    Get PDF
    Solar energetic particle events observed in space have different properties depending on the class of associated flare. Impulsive flares, which occur low in the corona in regions of high energy density, are associated with particle events which are deficient in protons. These events are rarely associated with coronal mass ejections and interplanetary shocks. The vast majority of large, high energy proton events are associated with long duration flares, many of which are also associated with fast coronal mass ejections and strong interplanetary shocks. Such flare events originate relatively high in the corona

    The solar wind structures associated with cosmic ray decreases and particle acceleration in 1978-1982

    Get PDF
    The time histories of particles in the energy range 1 MeV to 1 GeV at times of all greater than 3 percent cosmic ray decreases in the years 1978 to 1982 are studied. Essentially all 59 of the decreases commenced at or before the passages of interplanetary shocks, the majority of which accelerated energetic particles. We use the intensity-time profiles of the energetic particles to separate the cosmic ray decreases into four classes which we subsequently associate with four types of solar wind structures. Decreases in class 1 (15 events) and class 2 (26 events) can be associated with shocks which are driven by energetic coronal mass ejections. For class 1 events the ejecta is detected at 1 AU whereas this is not the case for class 2 events. The shock must therefore play a dominant role in producing the depression of cosmic rays in class 2 events. In all class 1 and 2 events (which comprise 69 percent of the total) the departure time of the ejection from the sun (and hence the location) can be determined from the rapid onset of energetic particles several days before the shock passage at Earth. The class 1 events originate from within 50 deg of central meridian. Class 3 events (10 decreases) can be attributed to less energetic ejections which are directed towards the Earth. In these events the ejecta is more important than the shock in causing a depression in the cosmic ray intensity. The remaining events (14 percent of the total) can be attributed to corotating streams which have ejecta material embedded in them

    Variations in elemental composition of several MEV/nucleon ions observed in interplanetary space

    Get PDF
    Six years of accumulated ISEE-3 and IMP-8 data to study variations in elemental relative abundances among the different populations of energetic ions seen in interplanetary space are surveyed. Evidence suggesting that heavy ion enrichments may be organized by a rigidity scaling factor A/Z over the range H to Fe is presented. Data to support the hypothesis that shock-associated particles are probably accelerated from ambient energetic fluxes are shown

    The heavy ion composition in 3HE-rich solar flares

    Get PDF
    The 3He-rich flares show a tendency to be enriched in heavy ions, and that this enrichment covers the charge range through Fe. The discovery of this association was responsible, in part, for the discarding of 3He enrichment models which involved spallation or thermonuclear reactions, since such models were unable to produce heavy nuclei enhancement. Results of a survey of heavy nucleus abundances observed in 66 3He-rich flares which occurred over the period October 1978 to June 1982 are presented

    Corotating energetic particle and fast plasma streams in the inner and outer solar system: Radial dependence and energy spectra

    Get PDF
    Interplanetary acceleration processes are shown as the most plausible explanation for the observed corotating energetic particle events. The relation between the energetic particle events and the properties of the high speed solar wind streams observed at 1 AU were investigated along with the form of the energy spectrum of the corotating energetic particle streams and its variation with respect to CIR boundaries and with radial distance. It is shown that: (1) at 1 AU a correlation exists between the j particle intensity and the solar wind velocity measured during the rising part of the event, of the form I is proportional to exp (V sub sw/V sub o); and (2) the energy spectra from .5 to 20 MeV are well represented by an exponential in momentum of the form dJ/dP = C exp (-P/P sub o). This representation is found to apply from .45 AU to beyond 5 AU. The variation of P sub o with respect to the CIR boundaries was studied using a method of superposed epoch analysis. It is shown that at 1 AU the spectrum remains constant during the first two days and then progressively flattens; between 3-4AU

    The heavy ion compositional signature in 3He-rich solar particle events

    Get PDF
    A survey of the approx. 1 MeV/nucleon heavy ion abundances in 66 He3-rich solar particle events was performed using the Max-Planck-Institut/University of Maryland and Goddard Space Flight Center instruments on the ISEE-3 spacecraft. The observations were carried out in interplanetary space over the period 1978 October through 1982 June. Earlier observations were confirmed which show an enrichment of heavy ions in HE3-rich events, relative to the average solar energetic particle composition in large particle events. For the survey near 1.5 MeV/nucleon the enrichments compared to large solar particle events are approximately He4:C:O:Ne:Mg:Si:Fe = 0.44:0.66:1.:3.4:3.5:4.1:9.6. Surprising new results emerging from the present broad survey are that the heavy ion enrichment pattern is the same within a factor of approx. 2 for almost all cases, and the degree of heavy ion enrichment is uncorrelated with the He3 enrichment. Overall, the features established appear to be best explained by an acceleration mechanism in which the He3 enrichment process is not responsible for the heavy ion enrichment, but rather the heavy ion enrichment is a measure of the ambient coronal composition at the sites where the He3-rich events occur

    The radial variation of corotating energetic particle streams in the inner and outer solar system

    Get PDF
    The radial gradient of long-lived, corotating energetic particle streams was measured using observations of .9-2.2 MeV protons from Helios 1 and 2, IMP 7, Pioneer 10 and Pioneer 11. A positive gradient of approximately 350% per AU is found between .3 AU and 1 AU. Between 1 AU and some 3-5 AU, the gradient is variable with an average value of 100% per AU which is consistent with earlier statistical results. A comparison between measurements at 9 AU and approximately 4 AU shows a negative gradient which is variable from -40 to -100% per AU. Possible solar latitudinal effects on these gradient studies are also discussed. Using solar wind and magnetic field data from Helios 1 between 1 AU and .3 AU, the relation between corotating energetic particle events in the inner solar system and the interplanetary medium is examined. It is found that the energetic particles are contained inside the high speed solar wind stream in a region adjacent to the interaction region between low speed and high speed streams

    The interplanetary acceleration of energetic nucleons

    Get PDF
    Co-rotating proton and electron streams are the dominant type of low-energy (0.1-10 MeV/nucleon) particle event observed at 1 A.U. The radial dependence of these events was studied between 1 and 4.6 A.U. using essentially identical low-energy detector systems on IMP 7, Pioneer 10 and Pioneer 11. It was expected that at a given energy, the intensity of these streams would decrease rapidly with heliocentric distance due to the effects of interplanetary adiabatic deceleration. Instead it was found that from event to event the intensity either remains roughly constant or increases significantly (more than an order of magnitude) between 1 and 3 A.U. It appears that interplanetary acceleration processes are the most plausible explanation. Several possible acceleration models are explored
    corecore