1,691 research outputs found

    Contracts for Cross-Organizational Workflow Management

    Get PDF
    Nowadays, many organizations form dynamic partnerships to deal effectively with market requirements. As companies use automated workflow systems to control their processes, a way of linking workflow processes in different organizations is useful in turning the co-operating companies into a seamless operating virtual enterprise. The CrossFlow Esprit project aims at developing information technology for advanced process support in dynamic virtual organizations with contract based service trading. Contracts are necessary for flexible service outsourcing. This report presents contracts as a way of finding suitable partners, connect WFMSs of different kinds, control outsourced workflow, and share an abstraction of the workflow specification between the partners. The contract defines the data, process, and conditions relevant to the co-operation and the outsourced workflow on an abstract level. This information can be fed through an interface to the WFMSs on both sides of the outsourcing in order to automate fully the co-operation between the partners

    Neogene stratigraphic architecture and tectonic evolution of Wanganui, King Country, and eastern Taranaki Basins, New Zealand

    Get PDF
    Analysis of the stratigraphic architecture of the fills of Wanganui, King Country, and eastern Taranaki Basins reveals the occurrence of five 2nd order Late Paleocene and Neogene sequences of tectonic origin. The oldest is the late Eocene-Oligocene Te Kuiti Sequence, followed by the early-early Miocene (Otaian) Mahoenui Sequence, followed by the late-early Miocene (Altonian) Mokau Sequence, all three in King Country Basin. The fourth is the middle Miocene to early Pliocene Whangamomona Sequence, and the fifth is the middle Pliocene-Pleistocene Rangitikei Sequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th) with a eustatic origin occur particularly within the Whangamomona and Rangitikei Sequences, particularly those of 6th order with 41 000 yr periodicity

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    Megasequence architecture of Taranaki, Wanganui, and King Country basins and Neogene progradation of two continental margin wedges across western New Zealand.

    Get PDF
    Taranaki, Wanganui and King Country basins (formerly North Wanganui Basin) have been regarded as discrete basins, but they contain a very similar Neogene sedimentary succession and much of their geological history is held in common. Analysis of the stratigraphic architecture of the fill of each basin reveals the occurrence of four 2nd order megasequences of tectonic origin. The oldest is the early-early Miocene (Otaian Stage) Mahoenui Group/megasequence, followed by the late-early Miocene (Altonian Stage) Mokau Group/megasequence (King Country Basin), both of which correspond to the lower part of the Manganui Formation in Taranaki Basin. The third is the middle to late Miocene Whangamomona Group/megasequence, and the fourth is the latest Miocene-Pleistocene Rangitikei Supergroup/megasequence, both represented in the three basins. Higher order sequences (4th, 5th, 6th), having a eustatic origin, are evident in the Whangamomona and Rangitikei megasequences, particularly those of 5th order with 41 ka periodicity. The distribution of the megasequences are shown in a series of cross-section panels built-up from well -to-well correlations, complemented by time-stratigraphic cross-sections. The base of each megasequence is marked by marine flooding and represents a discrete phase in basin development. For the first megasequence this corresponded to rapid subsidence of the King Country Basin in a compressional setting and basement overthrusting on the Taranaki Fault, with the rapid introduction of terrigenous sediment during transgression. The Mahoenui megasequence accumulated mostly at bathyal depths; no regressive deposits are evident, having been eroded during subsequent uplift. The second (Mokau) megasequence accumulated during reverse movement on the Ohura Fault, formation of the Tarata Thrust Zone, and onlap of the basement block between the Taranaki Fault and the Patea-Tongaporutu-Herangi High (PTH). The Whangamomona megasequence accumulated during extensive reflooding of King Country Basin, onlap of the PTH High and of basement in the Wanganui Basin. This is an assymetrical sequence with a thin transgressive part (Otunui Formation) and a thick regressive part (Mount Messenger to Matemateaonga Formations). It represents the northward progradation of a continental margin wedge with bottom-set, slope-set and top-set components through Wanganui and King Country basins, with minor progradation over the PTH High and into Taranaki Basin. The Rangitikei megasequence is marked by extensive flooding at its base (Tangahoe Mudstone) and reflects the pull-down of the main Wanganui Basin depocentre. This megasequence comprises a second progradational margin wedge, which migrated on two fronts, one northward through Wanganui Basin and into King Country Basin, and a second west of the PTH High, through the Toru Trough and into the Central and Northern Grabens of Taranaki Basin and on to the Western Platform as the Giant Foresets Formation, thereby building up the modern shelf and slope. Fifth and 6th order sequences are well expressed in the shelf deposits (top-sets) of the upper parts of the Whangamomona and Rangitikei megasequences. They typically have a distinctive sequence architecture comprising shellbed (TST), siltstone (HST) and sandstone (RST) beds. Manutahi-1, which was continuously cored, provides calibration of this sequence architecture to wireline log character, thereby enabling shelf deposits to be mapped widely in the subsurface via the wireline data for hydrocarbon exploration holes. Similar characterization of slope-sets and bottom-sets is work ongoing. The higher order (eustatic) sequences profoundly influenced the local reservoir architecture and seal properties of formations, whereas the megasequence progradation has been responsible for the regional hydrocarbon maturation and migration. Major late tilting, uplift and erosion affected all three basins and created a regional high along the eastern Margin of Taranaki Basin, thereby influencing the migration paths of hydrocarbons sourced deeper in the basin and allowing late charge of structural and possibly stratigraphic traps

    The oldest peracarid crustacean reveals a Late Devonian freshwater colonization by isopod relatives.

    Get PDF
    Peracarida (e.g. woodlice and side-swimmers) are, together with their sister-group Eucarida (e.g. krill and decapods), the most speciose group of modern crustaceans, suggested to have appeared as early as the Ordovician. While eucarids' incursion onto land consists of mainly freshwater and littoral grounds, some peracarids have evolved fully terrestrial ground-crawling ecologies, inhabiting even our gardens in temperate regions (e.g. pillbugs and sowbugs). Their fossil record extends back to the Carboniferous and consists mainly of marine occurrences. Here, we provide a complete re-analysis of a fossil arthropod-Oxyuropoda-reported in 1908 from the Late Devonian floodplains of Ireland, and left with unresolved systematic affinities despite a century of attempts at identification. Known from a single specimen preserved in two dimensions, we analysed its anatomy using digital microscopy and multispectral macroimaging to enhance the contrast of morphological structures. The new anatomical characters and completeness of Oxyuropoda, together with a phylogenetic analysis with representatives of all major Eumalacostraca groups, indicate that Oxyuropoda is a crown peracarid, part of a clade including amphipods and isopods. As such, Oxyuropoda is the oldest known species Peracarida, and provides evidence that derived peracarids had an incursion into freshwater and terrestrial environments as early as the Famennian, more than 360 Ma

    Effect of restrained versus free drying on hygro-expansion of hardwood and softwood fibers and paper handsheet

    Full text link
    Earlier works in literature on the hygro-expansion of paper state that the larger hygro-expansivity of freely compared to restrained dried handsheets is due to structural differences between the fibers inside the handsheet. To unravel this hypothesis, first, the hygro-expansion of freely and restrained dried, hardwood and softwood handsheets has been characterized. Subsequently, the transient full-field hygro-expansion (longitudinal, transverse, and shear strain) of fibers extracted from these handsheets was measured using global digital height correlation, from which the micro-fibril angle was deduced. The hygro-expansivity of each individual fiber was tested before and after a wetting period, during which the fiber's moisture content is maximized, to analyze if a restrained dried fiber can "transform" into a freely dried fiber. It was found that the longitudinal hygro-expansion of the freely dried fibers is significantly larger than the restrained dried fibers, consistent with the sheet-scale differences. The difference in micro-fibril angle between the freely and restrained dried fibers is a possible explanation for this difference, but merely for the hardwood fibers, which are able to "transform" to freely dried fibers after being soaked in water. In contrast, this "transformation" does not happen in softwood fibers, even after full immersion in water for a day. Various mechanisms have been studied to explain the observations on freely and restrained dried hardwood and softwood, fiber and handsheets including analysis of the fibers' lumen and cross-sectional shape. The presented results and discussion deepens the understanding of the differences between freely and restrained dried handsheets.Comment: 43 pages, 15 figures, 2 table

    The Expedition to the Peel River in 2019: Fluvial Transport Across a Permafrost Landscape

    Get PDF
    The Expedition to the Peel River in 2019: Fluvial Transport Across a Permafrost Landscape EU Horizon2020 project, Nunataryuk. Consisting of 7 legs from 16 June 2019 - 11 August 2019

    Aerobic exercise increases post-exercise exogenous protein oxidation in healthy young males

    Get PDF
    The capacity to utilize ingested protein for optimal support of protein synthesis and lean body mass is described within the paradigm of anabolic competence. Protein synthesis can be stimulated by physical exercise, however, it is not known if physical exercise affects post-exercise protein oxidation. Characterization of the driving forces behind protein oxidation, such as exercise, can contribute to improved understanding of whole body protein metabolism. The purpose of this study is to determine the effect of two levels of aerobic exercise intensity on immediate post-exercise exogenous protein oxidation. Sixteen healthy males with a mean (SD) age of 24 (4) years participated. The subjects' VO2-max was estimated with the Åstrand cycling test. Habitual dietary intake was assessed with a three-day food diary. Exogenous protein oxidation was measured by isotope ratio mass spectrometry. These measurements were initiated after the ingestion of a 30 g 13C-milk protein test drink that was followed by 330 minutes breath sample collection. On three different days with at least one week in between, exogenous protein oxidation was measured: 1) during rest, 2) after 15 minutes of aerobic exercise at 30% of VO2-max (moderate intensity), and 3) after 15 minutes of aerobic exercise at 60% of VO2-max (vigorous intensity). After vigorous intensity aerobic exercise, 31.8%±8.0 of the 30 g 13C-milk protein was oxidized compared to 26.2%±7.1 during resting condition (p = 0.012), and 25.4%±7.6 after moderate intensity aerobic exercise compared to resting (p = 0.711). In conclusion, exogenous protein oxidation is increased after vigorous intensity aerobic exercise which could be the result of an increased protein turnover rate

    Type 0A 2D Black Hole Thermodynamics and the Deformed Matrix Model

    Full text link
    Recently, it has been proposed that the deformed matrix model describes a two-dimensional type 0A extremal black hole. In this paper, the thermodynamics of 0A charged non-extremal black holes is investigated. We observe that the free energy of the deformed matrix model to leading order in 1/q can be seen to agree to that of the extremal black hole. We also speculate on how the deformed matrix model is able to describe the thermodynamics of non-extremal black holes.Comment: 12 page

    Transient hygro- and hydro-expansion of freely and restrained dried paper: the fiber-network coupling

    Full text link
    The transient dimensional changes during \textit{hygro}-expansion and \textit{hydro}-expansion of freely and restrained dried, softwood and hardwood sheets and fibers is monitored, to unravel the governing micro-mechanisms occurring during gradual water saturation. The response of individual fibers is measured using a full-field global digital height correlation method, which has been extended to monitor the transient \textit{hydro}-expansion of fibers from dry to fully saturated. The \textit{hygro}- and \textit{hydro}-expansion is larger for freely versus restrained dried and softwood versus hardwood handsheets. The transient sheet-scale \textit{hydro}-expansion reveals a sudden strain and moisture content step. It is postulated that the driving mechanism is the moisture-induced softening of the so-called "dislocated regions" in the fiber's cellulose micro-fibrils, unlocking further fiber swelling. The strain step is negligible for restrained dried handsheets, which is attributed to the "dislocated cellulose regions" being locked in their stretched configuration during restrained drying, which is supported by the single fiber \textit{hydro}-expansion measurements. Finally, an inter-fiber bond model is exploited and adapted to predict the sheet-scale \textit{hygro}-expansion from the fiber level characteristics. The model correctly predicts the qualitative differences between freely versus restrained dried and softwood versus hardwood handsheets, yet, its simplified geometry does not allow for more quantitative predictions of the sheet-scale \textit{hydro}-expansion.Comment: 37 pages; 12 figures; 5 table
    corecore