849 research outputs found

    Tele-Robotic ATHLETE Controller for Kinematics - TRACK

    Get PDF
    TRACK is a specialized controller for the All-Terrain Hex-Limbed Extra-Terrestrial Explorer Robot (ATHLETE), which has six limbs with six kinematic degrees of freedom each

    A non-hydrolytic sol-gel approach for the preparation of MgxAl2(1-x)Ti(1+x)O5 powders

    Get PDF
    The study of non-hydrolytic reactions for the synthesis of MgxAl2(1-x)Ti(1+x)O5 solid solution with x = 0.6 is reported. The reagents chosen were Al(OsBu)(3), Ti(OiPr)(4), TiCl4 and Mg(NO3)(2).6H(2)O in toluene. The reactions were followed using C-13 Nuclear Magnetic Resonance (NMR) spectroscopy. Sol-gel synthesized powders were calcined in air at 300, 500, 1000, and 1200degreesC for 1 h. The powders were analysed by X-Ray Diffraction (XRD) demonstrating the formation of a Mg0.6Al0.8Ti1.6O5 phase in samples treated at the higher calcination temperature

    Mixed Real/Virtual Operator Interface for ATHLETE

    Get PDF
    The mixed real/virtual operator interface for ATHLETE (MSim-ATHLETE) is a new software system for operating manipulation and inspection tasks in JPL s ATHLETE (All-Terrain Hex-Legged Extra-Terrestrial Explorer). The system presents the operator with a graphical model of the robot and a palette of available joint types. Once virtual articulations are constructed for a task, the operator can move any joint or link, and the system interactively responds in realtime with a compatible motion for all joints that best satisfies all constraints

    A covalent organic/inorganic hybrid proton exchange polymeric membrane: synthesis and characterization

    Get PDF
    Commercial polyetheretherketone (Victrex PEEK) was sulfonated up to 90% degree of sulfonation (DS), then reacted with SiCl4 to obtain a hybrid polymer. The product was characterized by 29-Si NMR and ATR/FTIR spectroscopies demonstrating the formation of covalent bonds between the organic and inorganic components. No dispersed inorganic silicon was present in the product as evidenced by the lack of any resonance at 100 ppm. Despite the high DS the physicochemical properties of the hybrid were suitable for the preparation of membranes exhibiting high and stable conductivity values (10K2 S/cm), hence suitable for application as ion exchange membrane

    Sulfonated polyether ether ketone-based composite membranes doped with a tungsten-based inorganic proton conductor for fuel cell applications

    Get PDF
    Sulfonated polyether ether ketone (SPEEK)-based composite membranes doped with hydrated tungsten oxide were prepared and studied for proton exchange membrane applications. Hydrated tungsten oxide (W O3 ·2 H2 O) was synthesized via acidic hydrolysis of sodium tungstate and its structure and physicochemical features were investigated by thermogravimetric analysis (TG), X-ray diffraction (XRD), and electrochemical impedance spectroscopy (EIS). SPEEK/ W O3 ·2 H2 O composite membranes were prepared by mixing proper amounts of SPEEK and hydrated W O3 in dimethylacetamide as casting solvent. The composite membranes were characterized by XRD, TG-DTA, EIS, and water uptake measurements as a function of the oxide content in the membrane. In particular, XRD patterns as well as TG measurements indicated the existence of a coordinative interaction between the water molecules of tungsten oxide and the SPEEK sulfonic acid groups. This interaction lead to the enhancement of the membrane proton conductivity, as well as of their properties, from the point of view of heat resistance and water solubility. In fact, the addition of tungsten oxide resulted in higher proton conductivity, improved heat resistance, and lower water solubility. © 2006 The Electrochemical Society. All rights reserved

    Timescale of Emplacement and Rheomorphism of the Green Tuff Ignimbrite (Pantelleria, Italy)

    Get PDF
    We present a multidisciplinary study based on Differential Scanning Calorimetry (DSC), paleomagnetic analysis, and numerical modeling to gain information on the timescales of syn- and post-depositional ductile deformation of the strongly welded and rheomorphic Green Tuff ignimbrite (GT; Pantelleria, Italy). DSC measurements allow the determination of glass fictive temperatures (Tf; i.e., the parameter accounting for the cooling dependence of glass structure and properties). Using a Tf-based geospeedometry procedure, we infer the cooling rate (qc) experienced by the glassy phases in different lithofacies within the GT formation. Glass shards from the basal pumice fall deposit record a fast qc of ∼10°C/s. In contrast, the ignimbrite body returns slow qc values depending on the stratigraphic position and lithofacies (basal/upper vitrophyres, fiamme-rich and rheomorphic layers), ranging from ∼10−2 to ∼10−6 °C/s. Moreover, paleomagnetic analyses of the natural remanent magnetization of ignimbrite matrix and embedded lithic clasts indicate an emplacement temperature higher than 550–600°C. By integrating calorimetric and paleomagnetic datasets, we constrain a conductive cooling model, describing the ignimbrite's temperature-time-viscosity (T–t–η) evolution from the eruptive temperature to below Tf. Outcomes suggest that the upper and basal vitrophyres deformed and quenched over hours, indicating that the entire GT underwent intense syn-depositional ductile deformation. Furthermore, the central body remained above Tf for a much longer timespan (>1 month), enabling post-emplacement rheomorphic flow. Lastly, we discuss the critical role of mechanisms such as shear heating and retrograde solubility of volatiles, in locally controlling the rheological behavior of the GT

    Thick-film gas sensors based on vanadium-titanium oxide powders prepared by sol-gel synthesis

    Get PDF
    Two titania powders modified by 10 at.% of vanadium were prepared by two different sol-gel routes. The powders fired at 650 °C had the rutile structure. These powders were used to produce prototype thick-film sensors. Four series of thick-film samples were fabricated by screen-printing, fired for 1 h at 650 and 850 °C. The morphology and gas-sensing properties were examined and compared with those of pure and Ta-added titania films, previously studied by the authors. Ta addition inhibited the anatase-to-rutile phase transformation during heating and was also effective in keeping the TiO2 grain size in the nanometre range. On the contrary, V addition facilitated the anatase-to-rutile phase transformation. Thick films obtained from the two powders had similar conductance behaviour vs. temperature. The gas response of the films was affected by both the grain size and firing temperature. © 2003 Elsevier Ltd. All rights reserved
    • …
    corecore