1 research outputs found

    VNbCrMo refractory high-entropy alloy for nuclear applications

    Get PDF
    Refractory high-entropy alloys (RHEAs) with high melting points and low neutron absorption cross-section are sought for generation-IV fission and fusion reactors. A high throughput computational screening tool, Alloy Search and Predict (ASAP), was used to identify promising RHEA candidates from over 1 million four-element equimolar combinations. The selected VNbCrMo RHEA was further studied by CALPHAD to predict phase formation, which was compared to an experimentally produced ingot aged at 1200 °C. The VNbCrMo RHEA was found to constitute a majority bcc phase, with a 6% area fraction of C15-Laves formed at interdendritic regions, in contrast to the predictions of single-phase. The prediction of the yield strength by a model based upon edge dislocation mechanisms indicated 2.1 GPa at room temperature and 850 MPa at 1000 °C for the equimolar single bcc phase. The hardness of the alloy with C15-Laves was 748 HV (yield strength ∼2.4 GPa). Finally, the macroscopic neutron absorption cross-section was modelled for a wide range of energies. Displacements per atom per year and activation calculations, up to 1000 years after 2 years of continuous operation, in typical fusion and fission reactor scenarios were also performed using the inventory code FISPACT-II. This work gives new insight into the phase stability and performance of the VNbCrMo RHEA, which is compared with a similar design concept alloy, to assess the potential of novel RHEAs for use in advanced nuclear applications.Fil: Ferreirós, Pedro Antonio. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: von Tiedemann, S. O.. The University Of Birmingham (tub);Fil: Parkes, N.. The University Of Birmingham (tub);Fil: Gurah, D.. The University Of Birmingham (tub);Fil: King, D. J. M.. Imperial College London; Reino UnidoFil: Norman, P.. The University Of Birmingham (tub);Fil: Gilbert, M. R.. The University Of Birmingham (tub);Fil: Knowles, A. J.. Imperial College London; Reino Unid
    corecore