11,879 research outputs found

    Quasideuteron states with deformed core

    Get PDF
    The M1 transitions between low-lying T=1 and T=0 states in deformed odd-odd N=Z nuclei are analyzed in the frames of the rotor-plus-particle model. Using the representation of an explicit coupling of angular momenta we show that strong coupling of the quasideuteron configurations to the axially deformed core results in a distribution of the total 0+ --> 1+ strength among a few low-lying 1+ states. Simple analytical formulae for B(M1) values are derived. The realization of the M1 sum rule for the low-lying 1+,T=0 states is indicated. The calculated B(M1) values are found to be in good agreement with experimental data and reveal specific features of collectivity in odd-odd N=Z nuclei.Comment: 11 pages, 1 figure, LaTe

    Quasideuteron configurations in 46V and 58Cu

    Full text link
    The data on low spin states in the odd-odd nuclei 46V and 58Cu investigated with the 46Ti(p,ngamma)46V, 32S(16O,pn)46V and 58Ni(p,ngamma)58Cu reactions at the FN-TANDEM accelerator in Cologne are reported. The states containing large quasideuteron components are identified from the strong isovector M1 transitions, from shell model calculations and from experimental data for low-lying states.Comment: 6 pages, 3 figures, proceedings of the "Nuclear Structure 2000" conference, East Lansing, Michigan, USA, August 15-19, 2000; to appear in Nucl. Phys.

    Die U-topia der Ursprünglichen Einheit

    Get PDF

    Low-Spin Spectroscopy of 50Mn

    Get PDF
    The data on low spin states in the odd-odd nucleus 50Mn investigated with the 50Cr(p,ngamma)50Mn fusion evaporation reaction at the FN-TANDEM accelerator in Cologne are reported. Shell model and collective rotational model interpretations of the data are given.Comment: 7 pages, 2 figures, to be published in the proceedings of the "Bologna 2000 - Structure of the Nucleus at the Dawn of the Century" Conference, (Bologna, Italy, May 29 - June 3, 2000

    Deep Autoencoder for Combined Human Pose Estimation and body Model Upscaling

    Get PDF
    We present a method for simultaneously estimating 3D human pose and body shape from a sparse set of wide-baseline camera views. We train a symmetric convolutional autoencoder with a dual loss that enforces learning of a latent representation that encodes skeletal joint positions, and at the same time learns a deep representation of volumetric body shape. We harness the latter to up-scale input volumetric data by a factor of 4×4 \times, whilst recovering a 3D estimate of joint positions with equal or greater accuracy than the state of the art. Inference runs in real-time (25 fps) and has the potential for passive human behaviour monitoring where there is a requirement for high fidelity estimation of human body shape and pose

    Coupling of Surface and Volume Dipole Oscillations in C-60 Molecules

    Full text link
    We first give a short review of the ``local-current approximation'' (LCA), derived from a general variation principle, which serves as a semiclassical description of strongly collective excitations in finite fermion systems starting from their quantum-mechanical mean-field ground state. We illustrate it for the example of coupled translational and compressional dipole excitations in metal clusters. We then discuss collective electronic dipole excitations in C60_{60} molecules (Buckminster fullerenes). We show that the coupling of the pure translational mode (``surface plasmon'') with compressional volume modes in the semiclasscial LCA yields semi-quantitative agreement with microscopic time-dependent density functional (TDLDA) calculations, while both theories yield qualitative agreement with the recent experimental observation of a ``volume plasmon''.Comment: LaTeX, 12 pages, 5 figures (8 *.eps files); Contribution to XIV-th Nuclear Physics Workshop at Kazimierz Dolny, Poland, Sept. 26-29, 200

    The gas–liquid phase-transition singularities in the framework of the liquid-state integral equation formalism

    Get PDF
    6 pages, 4 figures.-- PACS: 64.70.Fx; 65.20.+w; 02.30.Rz; 62.10.+sThe singularities of various liquid-state integral equations derived from the Ornstein–Zernike relation and its temperature derivatives, have been investigated in the liquid–vapor transition region. As a general feature, it has been found that the existence of a nonsolution curve on the vapor side of the phase diagram, on which both the direct and the total correlation functions become complex—with a finite isothermal compressibility—also corresponds to the locus of points where the constant-volume heat capacity diverges, in consonance with a divergence of the temperature derivative of the correlation functions. In contrast, on the liquid side of the phase diagram one finds that a true spinodal (a curve of diverging isothermal compressibilities) is reproduced by the Percus–Yevick and Martynov–Sarkisov integral equations, but now this curve corresponds to states with finite heat capacity. On the other hand, the hypernetted chain approximation exhibits a nonsolution curve with finite compressibilities and heat capacities in which, as temperature is lowered, the former tends to diverge.E.L. acknowledges financial support of the Dirección General de Investigación Científica y Técnica under Grant No. FIS2004-02954-C03-01. This work has been carried out under the auspices of the exchange agreement between the Consejo Superior de Investigaciones Científicas and the Russian Academy of Sciencies, which supported the exchange visits of E.L. and G.S. in the past two years.Peer reviewe
    corecore